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ABSTRACT 

CONSTRAINED-ENERGY CROSS-WELL ACTUATION OF BISTABLE STRUCTURES 

Masoud Zarepoor 

Old Dominion University, 2016 

Director: Dr. Onur Bilgen 
 

 

Bistable structures have two stable equilibrium positions and can be utilized to 

maintain a specific static shape with no energy consumption. This dissertation focuses 

on the minimum required energy for performing snap-through of a bistable structure. 

Snap-through is the motion of a bistable structure from one stable equilibrium position 

to the other. This research uses the Duffing-Holmes equation as a one-degree-of-

freedom representative model of a bistable structure, and this nonlinear equation is 

solved to calculate the required energy for cross-well oscillation. The research identifies 

several unique features of the response of a bistable system subjected to force and 

energy constraints. The research also shows how the required energy for cross-well 

oscillation varies as a function of damping ratio, frequency ratio, and for different 

values of excitation force amplitudes. The response of the bistable system is compared 

to a mono-stable linear system with the same parameters. A magneto-elastic bistable 

beam was fabricated and tested to validate theoretical predictions. 



www.manaraa.com

iii 

 

Copyright, 2016, by Masoud Zarepoor, All Rights Reserved. 



www.manaraa.com

iv 

 

This dissertation is dedicated my parents, Gholamhossein Zarepour 

and Sedigheh Golafshan, and to my best friend, Mohsen, who have 

always devoted themselves to make my dreams come true. 

  



www.manaraa.com

v 

  

ACKNOWLEDGMENTS 

First, I would like to thank my advisor, Dr. Onur Bilgen, for help and support. 

He has always been available for answering my questions and provided me all the 

required resources for conducting a successful research project. 

Sincere thanks to my committee members, Dr. Sebastian Y. Bawab, Dr. Mounir 

Laroussi and Dr. Dipankar Ghosh for evaluating my research and giving me helpful 

feedback and suggestions. 

I would like to acknowledge my colleagues in the Smart Systems Laboratory. I 

will never forget their support, motivation and kind behavior.  

Thank you to my parents, Gholamhossein Zarepour and Sedigheh Golafshan, for 

supporting me while completing my education. I would not have been able to make 

progress without their guidance and self-sacrifice.  

Thanks to the Department of Mechanical and Aerospace Engineering at Old 

Dominion University, especially to Dr. Sebastian Y. Bawab, for financial and logistical 

support. 

This work was conducted in the Smart Systems Laboratory at Old Dominion 

University. 

  



www.manaraa.com

vi 

  

TABLE OF CONTENTS 

Page 

LIST OF TABLES ...................................................................................................................... VIII 

LIST OF FIGURES .......................................................................................................................IX 

Chapter 

1. INTRODUCTION AND LITERATURE REVIEW ..............................................................1 

1.1. BACKGROUND AND LITERATURE REVIEW ....................................................................2 

1.2. MOTIVATION ...............................................................................................................13 

1.3. OBJECTIVES ..................................................................................................................14 

1.4. OUTLINE OF THE DISSERTATION .................................................................................14 

2. THE DYNAMICS OF A BISTABLE STRUCTURE ...........................................................16 

2.1. INTRODUCTION ...........................................................................................................16 

2.2. MATHEMATICAL MODELING ......................................................................................16 

2.3. NUMERICAL SIMULATIONS .........................................................................................19 

2.4. EXPERIMENTAL VALIDATION .....................................................................................22 

2.5. CONCLUSIONS .............................................................................................................32 

3. SINGLE-TONE HARMONIC EXCITATION ...................................................................33 

3.1. INTRODUCTION ...........................................................................................................33 

3.2. PARAMETRIC ANALYSIS METHOD ..............................................................................33 

3.3. LINEAR SYSTEM ENERGY BEHAVIOR ..........................................................................34 

3.4. BISTABLE SYSTEM ENERGY BEHAVIOR ........................................................................41 

3.5. COMPARISON OF THE LINEAR AND THE NON-LINEAR SYSTEMS ...............................46 

3.6. CONCLUSIONS .............................................................................................................50 

4. HARMONIC AND RANDOM EXCITATION .................................................................52 

4.1. INTRODUCTION ...........................................................................................................52 



www.manaraa.com

vii 

  

Chapter Page 

4.2. GENERATION OF A BAND-LIMITED NOISE .................................................................52 

4.3. EXPERIMENTAL RESULTS .............................................................................................55 

4.4. PARAMETRIC ANALYSIS ..............................................................................................66 

4.5. LINEAR SYSTEM ENERGY BEHAVIOR ..........................................................................67 

4.6. BISTABLE SYSTEM ENERGY BEHAVIOR ........................................................................70 

4.7. COMPARISON OF LINEAR AND BISTABLE SYSTEMS ....................................................73 

4.8. CONCLUSIONS .............................................................................................................78 

5. CONCLUSIONS AND FUTURE WORK ...........................................................................79 

5.1. SUMMARY OF RESULTS ................................................................................................79 

5.2. RELATED PUBLICATIONS .............................................................................................81 

5.3. FUTURE RESEARCH ......................................................................................................81 

REFERENCES ..............................................................................................................................82 

VITA ..............................................................................................................................................86 



www.manaraa.com

viii 

  

LIST OF TABLES 

Table                                                                                                                                                       Page 

2-1. IDENTIFIED LINEAR BEAM PARAMETERS AND PARAMETERS USED  

FOR THE BISTABLE  BEAM. ........................................................................................... 26 

3-1. PARAMETERS FOR NUMERICAL SIMULATIONS. ................................................... 34 

3-2. THE RANGES OF DAMPING RATIO AND FREQUENCY RATIO, CAPABLE  

OF REACHING  TARGET DISPLACEMENT, FOR THE LINEAR AND  

BISTABLE SYSTEMS. ........................................................................................................ 49 

4-1. THE IDENTIFIED PARAMETERS FOR LINEAR BEAMS USED IN CHAPTER  

2 AND CHAPTER 4. .......................................................................................................... 61 

4-2. PARAMETERS FOR NUMERICAL SIMULATIONS. ................................................... 67 

  



www.manaraa.com

ix 

  

LIST OF FIGURES 

Figure                                                                                                                                       Page 

1-1. A CANTILEVERED BISTABLE WING WITH TWO SURFACE-BONDED 

PIEZOELECTRIC ACTUATORS: (A) ILLUSTRATION (B) PHYSICAL 

PROTOTYPE [1, 2]. .............................................................................................................. 1 

1-2. DEFLECTED CROSS-SECTIONAL AREAS OF A BEAM PREDICTED BY  

EULER-BERNOULLI AND TIMOSHENKO BEAM THEORIES [8]. ........................... 5 

1-3. A BUCKLED BEAM UNDER AN AXIAL COMPRESSIVE FORCE WITH TWO 

STABLE POSITIONS OF A AND B. .................................................................................. 6 

1-4. SOLUTION METHODS FOR MATHEMATICAL MODELS OF DIFFERENT 

STRUCTURES. .................................................................................................................... 10 

2-1. MECHANICAL REPRESENTATION OF A DUFFING-HOLMES OSCILLATOR. . 17 

2-2. SYMMETRIC AND ASYMMETRIC POTENTIAL ENERGY FUNCTIONS  

WITH THE SAME LINEAR STIFFNESS COEFFICIENT. ........................................... 19 

2-3. REQUIRED MINIMUM ENERGY FOR MOVING FROM THE INITIAL  

STABLE EQUILIBRIUM POSITION TO THE TARGET DISPLACEMENT OF  

10 MM (A) IN A LINEAR SYSTEM, AND (B) IN A NONLINEAR SYSTEM. ......... 20 

2-4. (A) DISPLACEMENT VS. TIME FOR A LINEAR SYSTEM WITH 𝜔𝑛 = 13 HZ,  

휁= 0.005, 𝐹𝑟 = 1, AND 𝜔𝑟 = 0.07 AND COMPARISON OF (B) ANALYTICAL 

ENERGY FUNCTION, (C)  NUMERICAL ENERGY FUNCTION FOR 𝐹𝑟= 0.25. ... 22 

2-5. THE MAGNETO-ELASTIC CANTILEVERED BEAM: A) TEST APPARATUS,  

AND STABLE EQUILIBRIUM STATES B) ONE AND C) TWO. ............................... 23 

2-6. A CANTILEVERED BEAM SUBJECTED TO A POINT LOAD. ................................. 25 

 

 



www.manaraa.com

x 

  

Figure                                                                                                                                       Page 

2-7. NUMERICAL AND EXPERIMENTAL FREQUENCY RESPONSES: (A) 

DISPLACEMENT    STANDARD DEVIATION TO FORCE STANDARD 

DEVIATION (B) ACCELERATION STANDARD DEVIATION TO FORCE 

STANDARD DEVIATION. .............................................................................................. 27 

2-8. PHASE PORTRAITS AT THE FREQUENCY OF 16.8 HZ: (A) NUMERICAL (B) 

EXPERIMENTAL. .............................................................................................................. 28 

2-9. PHASE PORTRAITS AT THE FREQUENCY OF 14 HZ: (A) NUMERICAL (B) 

EXPERIMENTAL; 17 HZ: (C) NUMERICAL (D) EXPERIMENTAL; 22 HZ: (E) 

NUMERICAL (F) EXPERIMENTAL (EQUAL HORIZONTAL SCALE FOR  

ALL PLOTS). ....................................................................................................................... 29 

2-10. BIFURCATION DIAGRAMS FROM: (A) NUMERICAL AND (B) 

EXPERIMENTAL RESULTS. ............................................................................................ 30 

2-11. NUMERICAL BIFURCATION DIAGRAMS FOR THE DAMPING RATIOS  

OF: (A) 0.11 (B) 0.12, (C) 0.125 (D) 0.135. ........................................................................ 31 

3-1. TOTAL ENERGY OF AN UNDER-ACTUATED LINEAR SYSTEM WITH 𝐹𝑟 =  

0.25 AS A    FUNCTION OF FREQUENCY RATIO AND DAMPING RATIO. ....... 34 

3-2. DISPLACEMENT TIME HISTORY FOR THE LINEAR SYSTEM UNTIL 

DISPLACEMENT REACHES THE TARGET VALUE OF 10 MM WITH 𝐹𝑟 =  

0.25, EXCITATION FREQUENCY RATIO OF 0.97, AND DAMPING RATIOS  

OF (A) 휁 = 0.115 (B) 휁 = 0.120 (C) 휁 = 0.125. ..................................................................... 35 

3-3. RESPONSE OF AN UNDER-ACTUATED LINEAR SYSTEM WITH 𝐹𝑟 = 0.25  

AS A FUNCTION OF FREQUENCY RATIO AND DAMPING RATIO: (A) 

NUMBER OF ZERO-VELOCITY CROSSINGS (B) NUMBER OF HALF CYCLES.. 36 

 

 

 



www.manaraa.com

xi 

  

Figure                                                                                                                                       Page 

3-4. RESPONSE OF AN UNDER-ACTUATED LINEAR SYSTEM WITH 𝐹𝑟 = 0.25  

AS A FUNCTION OF FREQUENCY RATIO AND DAMPING RATIO: (A)  

ZERO DEGREE AZIMUTH ANGLE VIEW (B) NINETY DEGREE AZIMUTH 

ANGLE VIEW. ................................................................................................................... 38 

3-5. RESPONSE OF A LINEAR SYSTEM WITH 𝐹𝑟 = 1 AS A FUNCTION OF 

FREQUENCY RATIO AND DAMPING RATIO: (A) TOTAL ENERGY, AND  

(B) NUMBER OF ZERO-VELOCITY CROSSINGS. ...................................................... 39 

3-6. RESPONSE OF A LINEAR SYSTEM WITH 𝐹𝑟 =1.5 AS A FUNCTION OF 

FREQUENCY RATIO   AND DAMPING RATIO: (A) TOTAL ENERGY, AND  

(B) NUMBER OF ZERO-VELOCITY CROSSINGS. ...................................................... 40 

3-7. EXAMPLE PHASE PORTRAITS OF A BISTABLE SYSTEM WITH (A) 𝐹𝑟 =  

0.25, 𝜔𝑟 = 1, 휁 = 0.25 (B) 𝐹𝑟 = 0.25, 𝜔𝑟 = 1.08, 휁 = 0.151 (C) 𝐹𝑟 = 1, 𝜔𝑟 = 1, 휁 = 0.25  

(D) 𝐹𝑟 = 1,𝜔𝑟 = 1.23, 휁 = 0.605 (E) 𝐹𝑟 = 1.5, 𝜔𝑟 = 1, 휁 = 0.25 (F) 𝐹𝑟 = 1.5, 𝜔𝑟 = 2.61,  

휁 = 0.005 (EQUAL HORIZONTAL SCALE FOR ALL PLOTS).................................... 42 

3-8. RESPONSE OF AN UNDER-ACTUATED BISTABLE STRUCTURE WITH 𝐹𝑟  

= 0.25 AS A  FUNCTION OF FREQUENCY RATIO AND DAMPING RATIO:  

(A) TOTAL ENERGY (B) NUMBER OF ZERO-VELOCITY CROSSINGS; 

NORMALIZED DAMPING ENERGY: (C) ZERO DEGREE AZIMUTH ANGLE 

VIEW (D) NINETY DEGREE AZIMUTH ANGLE VIEW. .......................................... 43 

3-9. RESPONSE OF A BISTABLE STRUCTURE WITH 𝐹𝑟 = 1 AS A FUNCTION OF 

FREQUENCY    RATIO AND DAMPING RATIO: (A) TOTAL ENERGY, AND  

(B) NUMBER OF ZERO-VELOCITY CROSSINGS. ...................................................... 45 

3-10. RESPONSE OF A BISTABLE STRUCTURE WITH 𝐹𝑟 = 1.5 AS A FUNCTION  

OF FREQUENCY RATIO AND DAMPING RATIO: (A) TOTAL ENERGY,  

AND (B) NUMBER OF ZERO-VELOCITY CROSSINGS. ............................................ 46 

 



www.manaraa.com

xii 

  

Figure                                                                                                                                       Page 

3-11. NUMBER OF ZERO-VELOCITY CROSSINGS OF UNDER-ACTUATED  

SYSTEMS WITH 𝐹𝑟 =   0.25 (A) A LINEAR SYSTEM (B) A BISTABLE  

STRUCTURE. ...................................................................................................................... 47 

3-12. NUMBER OF ZERO-VELOCITY CROSSINGS OF SYSTEMS WITH 𝐹𝑟 = 1 (A)  

A LINEAR SYSTEM (B) A BISTABLE STRUCTURE. ................................................... 48 

3-13. NUMBER OF ZERO-VELOCITY CROSSINGS OF SYSTEMS WITH 𝐹𝑟  = 1.5  

(A) A LINEAR SYSTEM (B) A BISTABLE STRUCTURE. ............................................ 49 

4-1. POWER SPECTRUM OF: (A) WHITE NOISE SIGNAL WITH STD OF 1N (B) 

FILTERED WHITE NOISE. .............................................................................................. 54 

4-2. MULTI-TONE FORCE WITH 𝐹𝑟 = 0.25, AND NOISE STD TO HARMONIC  

STD RATIO OF (A)    0.2 (B) 0.4 (C) 0.8. ......................................................................... 55 

4-3. THE NEW EXPERIMENTAL SETUP: A) TEST APPARATUS, AND STABLE 

EQUILIBRIUM    STATES: B) ONE AND C) TWO. ...................................................... 56 

4-4. POWER SPECTRA OF THREE FILTERED NOISES WITH STDS OF: 1.3 N,  

2.9 N, AND 5.3 N. .............................................................................................................. 57 

4-5. FFTS OF FILTERED NOISE SIGNAL WITH STDS OF: 1.3 N, 2.9 N, AND 5.3 N. ... 58 

4-6. RATIOS OF DISPLACEMENT STD TO FORCE STD AND DISPLACEMENT  

FFT TO FORCE FFT   FOR MULTI-TONE SIGNALS WITH NOISE STDS OF:  

1.3 N, 2.4 N, 5.3 N, AND 6.7 N. ........................................................................................ 59 

4-7. EXPERIMENTAL RATIOS OF DISPLACEMENT FFT TO FORCE FFT FOR  

THE MULTI-TONE SIGNAL WITH HARMONIC AMPLITUDE OF 1.1 N, 3.4  

N AND, 5.6 N AND SAME NOISE STD OF 1.3 N AND ANALYTICAL 

IDENTIFIED DISPLACEMENT TO FORCE RATIO. ................................................... 60 

 

 

 



www.manaraa.com

xiii 

  

Figure                                                                                                                                       Page 

4-8. NUMERICAL AND EXPERIMENTAL FREQUENCY RESPONSES OF THE 

BISTABLE BEAM SUBJECTED TO HARMONIC EXCITATION WITH THE 

AMPLITUDE OF 1.1 N: (A) DISPLACEMENT STD TO FORCE STD (B) 

ACCELERATION STD TO FORCE STD. ....................................................................... 62 

4-9. DISPLACEMENT BIFURCATION DIAGRAMS FOR 1.1 N HARMONIC  

FORCE AMPLITUDE: (A) NUMERICAL (B) EXPERIMENTAL. .............................. 63 

4-10. EXPERIMENTAL RATIOS OF DISPLACEMENT STD TO FORCE STD FOR  

THE EXCITATION  WITH HARMONIC AMPLITUDE OF 1.1 N AND NOISE  

STD OF 0 N, 1.3 N, 2.4 N, AND 5.3 N. ............................................................................ 64 

4-11. EXPERIMENTAL MEAN DISPLACEMENT FOR EXCITATION WITH 

HARMONIC AMPLITUDE  OF 1.1 N AND NOISE STD OF 0 N, 1.3 N, 2.4 N,  

AND 5.3 N. .......................................................................................................................... 65 

4-12. EXPERIMENTAL MEAN DISPLACEMENT FOR THE EXCITATION WITH 

HARMONIC AMPLITUDE OF 15.5 N AND NOISE STD OF 0 N, 1.3 N, 2.4 N,  

AND 5.3 N. .......................................................................................................................... 66 

4-13. TOTAL ENERGY OF A LINEAR SYSTEM WITH 𝐹𝑟 = 0.25 AS A FUNCTION  

OF FREQUENCY RATIO AND DAMPING RATIO FOR (A) PURE  

HARMONIC EXCITATION AND EXCITATION WITH 𝐹𝑛 OF (B) 0.2 (C) 0.4  

(D) 1. ..................................................................................................................................... 68 

4-14. NORMALIZED DAMPING ENERGY OF A LINEAR SYSTEM WITH 𝐹𝑟 =  

0.25 AS A FUNCTION OF FREQUENCY RATIO AND DAMPING RATIO  

FOR (A) PURE HARMONIC EXCITATION AND EXCITATION WITH 𝐹𝑛 

 OF (B) 0.2 (C) 0.4 (D) 1. ..................................................................................................... 69 

 

 

 



www.manaraa.com

xiv 

  

Figure                                                                                                                                       Page 

4-15. NORMALIZED DAMPING ENERGY OF A LINEAR SYSTEM WITH 𝐹𝑟 =  

0.25 AS A FUNCTION OF FREQUENCY RATIO AND DAMPING RATIO  

FOR (A) PURE HARMONIC EXCITATION AND EXCITATION WITH 𝐹𝑛  

OF (B) 0.2 (C) 0.4 (D) 1. ...................................................................................................... 70 

4-16. TOTAL ENERGY OF A BISTABLE STRUCTURE WITH 𝐹𝑟 = 0.25 AS A 

FUNCTION OF FREQUENCY RATIO AND DAMPING RATIO FOR (A)  

PURE HARMONIC EXCITATION AND EXCITATION WITH 𝐹𝑛 OF (B) 0.2  

(C) 0.4 (D) 1. ........................................................................................................................ 71 

4-17. NORMALIZED DAMPING ENERGY OF A BISTABLE STRUCTURE WITH  

𝐹𝑟 = 0.25 AS A FUNCTION OF FREQUENCY RATIO AND DAMPING  

RATIO FOR (A) PURE HARMONIC EXCITATION AND EXCITATION  

WITH 𝐹𝑛 OF (B) 0.2 (C) 0.4 (D) 1. .................................................................................... 72 

4-18. NORMALIZED DAMPING ENERGY OF A BISTABLE STRUCTURE WITH  

𝐹𝑟 = 0.25 AS A FUNCTION OF FREQUENCY RATIO AND DAMPING RATIO 

FOR (A) PURE HARMONIC EXCITATION AND EXCITATION WITH 𝐹𝑛 OF  

(B) 0.2 (C) 0.4 (D) 1. ............................................................................................................ 73 

4-19. COMPARISON BETWEEN TOTAL ENERGIES OF A LINEAR SYSTEM (LEFT 

COLUMN) AND A BISTABLE SYSTEM (RIGHT COLUMN)  

SUBJECTED TO: (A-B) PURE HARMONIC    EXCITATION AND  

EXCITATIONS WITH 𝐹𝑛 OF: (C-D) 0.2 (E-F) 0.4 (G-H) 1. .......................................... 74 

4-20. COMPARISON BETWEEN DAMPING ENERGIES OF A LINEAR SYSTEM  

(LEFT COLUMN) AND A BISTABLE SYSTEM (RIGHT COLUMN)  

SUBJECTED TO: (A-B) PURE HARMONIC EXCITATION AND  

EXCITATIONS WITH 𝐹𝑛 OF: (C-D) 0.2 (E-F) 0.4 (G-H) 1. .......................................... 75 

 

 



www.manaraa.com

xv 

  

Figure                                                                                                                                       Page 

4-21. COMPARISON BETWEEN DAMPING ENERGIES OF A LINEAR SYSTEM  

(LEFT COLUMN) AND A BISTABLE SYSTEM (RIGHT COLUMN)  

SUBJECTED TO: (A-B) PURE HARMONIC EXCITATION AND  

EXCITATIONS WITH 𝐹𝑛 OF: (C-D) 0.2 (E-F) 0.4 (G-H) 1. .......................................... 77 

 

  



www.manaraa.com

1 

  

  

CHAPTER 1  

INTRODUCTION AND LITERATURE REVIEW 

Bistability is defined as the capability of a structure to adopt two stable shapes 

and to be utilized to maintain a specific static shape with no energy consumption. This 

research investigates the minimum required energy for performing snap-through of a 

bistable structure. The motion of a bistable structure from one stable equilibrium 

position to the other is physically modeled as a jump phenomenon known as a snap-

through. Snap-through behavior is exploited to convert small-scale displacements of 

actuators to large-scale ones. Figure 1-1 represents a bistable wing with piezoelectric 

actuators [1, 2]. 

 
Figure 1-1. A cantilevered bistable wing with two surface-bonded piezoelectric actuators: (a) 

illustration (b) physical prototype [1, 2]. 

The following sections present the background related to this research. Section 

1.1 provides a brief explanation of piezoelectric materials and demonstrates the most 

known structural theories on beams. Next, the bistability property, actuation of bistable 
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structures, and solution techniques are presented. Sections 1.2-1.4 provide the 

motivation, objectives, and the outline of the dissertation, respectively. 

1.1.  Background and Literature Review 

The following sections present information on the piezoelectric materials, 

structural theories for beams, bistable structures, and solution techniques.  

1.1.1.  Piezoelectric Materials 

Piezoelectric materials exhibit electromechanical coupling. They produce 

electrical charge when a mechanical stress is applied; this effect is known as the direct 

effect and has applications in sensing and harvesting vibrational energy. Piezoelectric 

materials deform by the application of an electric field, and this electrical-to-mechanical 

coupling is known as the converse piezoelectric effect. Converse piezoelectric effect is 

used for actuating different structures [3-5]. 

The properties of a piezoelectric material can be described by two mechanical 

variables and two electrical variables. Two mechanical variables are stress and strain, 

and two electric field variables are electric field and electric displacement. The direct 

and converse piezoelectric effects for a one-dimensional piezoelectric material can be 

described by two linear equations, which show the relationship between strain and 

electric displacement as a function of applied stress and applied electric field, shown in 

matrix form as follows: 

 [
𝑆
𝐷

] = [
𝑠
𝑑
𝑑
휀
] [

𝑇
𝐸
]. (1-1) 

In the above equation, 𝑆, 𝐷, 𝑇, and 𝐸 are strain, electric displacement, applied 

stress, and applied electric field, respectively. Also, 𝑠, 𝑑, and 휀 are mechanical 

compliance, piezoelectric strain coefficient, and the dielectric permittivity, respectively. 
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The three-dimensional electromechanical behavior of a piezoelectric material is 

governed by the linear constitutive equations as follows [3]: 

 𝑆𝑖 = 𝑆𝑖𝑗
𝐸  𝑇𝑗  + 𝑑𝑖𝑘𝐸𝑘 (1-2) 

 𝐷𝑚 = 𝑑𝑚𝑗  𝑇𝑗  + 휀𝑚𝑘 
𝑇 𝐸𝑛. (1-3) 

The superscript 𝐸 shows constant electric field, and the superscript 𝑇 indicates 

constant stress. The matrix form of the constitutive equations is [5]: 

 

[
 
 
 
 
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11

𝑆21

𝑆31

𝑆41

𝑆51

𝑆61

𝑆12

𝑆22

𝑆32

𝑆42

𝑆52

𝑆62

𝑆13

𝑆23

𝑆33

𝑆43

𝑆53

𝑆63

𝑆14

𝑆24

𝑆34

𝑆44

𝑆54

𝑆64

𝑆15

𝑆25

𝑆35

𝑆45

𝑆55

𝑆65

𝑆16

𝑆26

𝑆36

𝑆46

𝑆56

𝑆66]
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+
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𝑑13

𝑑23

𝑑33

𝑑43

𝑑53

𝑑63]
 
 
 
 
 

[
𝐸1

𝐸2

𝐸3

] (1-4) 

 [
𝐷1

𝐷2

𝐷3

] = [

𝑑11

𝑑21

𝑑31

𝑑12

𝑑22

𝑑32

𝑑13

𝑑23

𝑑33

𝑑14

𝑑24

𝑑34

𝑑15

𝑑25

𝑑35

𝑑16

𝑑26

𝑑36

] + [

휀11

휀21

휀31

휀12

휀22

휀32

휀13

휀23

휀33

] [
𝐸1

𝐸2

𝐸3

]. (1-5) 

1.1.2.  Structural Modeling of Beams 

Several beam theories exist for modeling a beam in response to an external force 

or a bending moment. These theories are different in the mathematical description of 

strain through the beam thickness. The most well-known beam theories are: the Euler-

Bernoulli beam theory, the Rayleigh beam theory, and the Timoshenko beam theory. 

The Euler-Bernoulli beam theory assumes that the cross sectional area of a beam 

is rigid and does not distort with the application of a bending moment. Also, it is 

assumed that the cross sectional area remains perpendicular to the neutral axis after 

deflection of the beam. This theory is mainly utilized for slender beams with high 

length-to-thickness ratio. As a result, the effects of shear distortion and rotary inertia 
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can be neglected. The Euler-Bernoulli equation for the transverse vibration of a beam is 

[6]: 

 𝜌𝐴
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2 + 𝑌𝐼 
𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4 = 𝑞(𝑥, 𝑡). (1-6) 

In the above equation, 𝜌 is the beam density, 𝐴 is the cross-sectional area, 𝑤(𝑥, 𝑡) is the 

beam transverse deflection, 𝐼 is the beam area moment of inertia, and 𝑞 is the applied 

load per unit length. 

The Rayleigh beam theory improves the Euler-Bernoulli beam model by adding 

the effect of rotary inertia; this effect is included by adding a term to the inertial 

component in Euler-Bernoulli beam equation. The Rayleigh beam theory equation for 

the transverse motion of a beam is: 

 𝜌𝐴
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2 + 𝑌𝐼 
𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4 − 𝜌𝐼
𝜕4𝑤(𝑥,𝑡)

𝜕𝑡2𝜕𝑥2 = 𝑞(𝑥, 𝑡). (1-7) 

The Timoshenko beam theory considers both the effect of rotary inertia and the 

effect of shear deformation. The Timoshenko beam theory is used to model the 

dynamics of beams with moderate length-to-thickness ratios. In the Timoshenko beam 

theory, the cross-sectional area of a beam distorts and does not remain perpendicular to 

the neutral axis with the application of a bending moment, due to the consideration of 

the effect of shear deformation [6, 7]. 

Figure 1-2 represents the predicted deflected cross-sectional areas of a beam by 

the Euler-Bernoulli and the Timoshenko beam theories. As can be seen in the figure, the 

cross-sectional area distorts for the Timoshenko beam theory, and it does not remain 

perpendicular to the neutral axis after deflection. 
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Figure 1-2. Deflected cross-sectional areas of a beam predicted by Euler-Bernoulli and Timoshenko 

beam theories [8]. 

1.1.3.  Bistable Structures 

Bistable structures are able to adopt two stable shapes and have applications in 

different areas, including common electronic devices such as switches [9-11], relays [12, 

13], memory cells [14], control surfaces for morphing aircraft [2, 15-17], and in wind 

turbine blades for load alleviation [18]. The bistability property can be achieved in 

buckled beams and plates such as in cross-ply composite plates due to residual thermal 

stresses induced during the curing process [1, 19-23], slender beams under an axial 

compressive force [24-26], or beams buckled between two magnets [27]. The motion 

from one stable state to another is physically modeled as a jump phenomenon known as 

snap-through, and is exploited in actuators designed to produce large displacements 

with a small amount of actuation energy [15, 20, 28-30]. 

Bistability can be achieved in beams by applying an axial compressive force to 

them; the compressive force induces buckling in a beam. Several approaches exist to 

generate an axial compressive force. Figure 1-3 represents a cantilevered beam, buckled 

under an axial compressive force. As observed in the figure, the beam is bistable and 

can stand at the position of either A or B. 
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Figure 1-3. A buckled beam under an axial compressive force with two stable positions of A and B. 

Lindberg et al. [24] demonstrated the buckling behavior of a beam due to an axial 

compressive force generated by temperature rise. The beam was subjected to a 

generalized temperature. The beam shows a smooth transition into one of the stable 

equilibrium positions at the bifurcation load. 

Fang and Wickert [25] studied the static deformation of a beam, in the 

prebuckling and postbuckling regions, applied to an axial compressive force generated 

by a residual stress. It was found that the fabricated beams show continuous growth of 

deflection, in contrast to sudden bifurcation, at a critical load by considering the effect 

of imperfections, such as fabrication defects or non-ideal loading. 

Vangbo [26] proposed a theoretical method to model the snap-through of a beam 

subjected to a known axial compressive force and a transverse compressive force. The 

transverse force changes the snap-through path and can be tuned to set the magnitude 

of critical axial force, required for buckling. 

Saif [29] fabricated a tunable bistable micro-electro-mechanical system (MEMS). 

The system consists of a long slender micromechanical beam, attached to an actuator. 

The actuator applies an axial compressive force to make the beam bistable. A closed-

form relation between the actuation force and the location of stable equilibrium is 

presented in this paper. 

y

x

P

A

B
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Tseng and Dugundji [31] described the chaotic motion and the snap-through 

behavior of a bistable buckled beam analytically and experimentally. Holmes [32] 

further explored the behavior of a bistable buckled beam in a more detailed manner. 

Moon and Holmes [27] presented a bistable beam buckled between two magnets. 

They developed a lumped-parameter model based on linear elastic and nonlinear 

magnetic forces. 

Bistability can be achieved in cross-ply composite plates due to residual stress, as 

mentioned earlier. Residual stresses build up during the curing process of multi-layered 

composite plates with different fiber orientations. Hufenbach et al. [19] proposed a 

modified stability analysis to predict the multistable deformation states of a fiber-

reinforced composite due to thermal effects, moisture absorption and chemical 

shrinkage. The proposed method is capable of precise assessment of the design 

parameters for the construction of novel adaptive structures. 

1.1.4.  Piezoelectric Actuation of Bistable Structures 

Improving energy features of piezoelectric actuators has been an important area 

of research, and a number of models are proposed to predict the energy consumption of 

a piezoelectric actuator. 

Sun and Tong [33] determined the optimal voltage to control the static shape of 

composite plates using nonlinear piezoelectric actuators. 

Liang [34] presented a coupled electro-mechanical model of a piezoceramic  

actuator integrated in a one-degree-of-freedom mechanical system to predict the 

actuator energy consumption and energy transfer from the actuator to the mechanical 

system. 

Brennan and McGowan [35] proposed a method to predict the power 

consumption of a piezoelectric actuator used for active vibration control. They found 
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that the required power is independent of the dynamics between the surface-bonded 

piezoelectric actuator and the controlled structure. 

Sirohi and Chopra [36] demonstrated the design of a tuned inductor-capacitor (L-

C) oscillator circuit for piezoelectric actuators. These actuators have high capacitance 

and need large electric currents to be driven. Large currents result in excessive heat 

generation. Using an L-C oscillator circuit reduces the required power for driving a 

piezoelectric actuator by decreasing the required electric current. 

Several important papers, studying the power consumption of a piezoelectric 

actuator were presented previously. These papers present different methods for 

calculating the power consumption of a piezoelectric actuator and propose various 

approaches for reducing the required power. However, piezoelectric actuators have 

small deformation outputs and cannot be used directly for large shape changes. 

Nonlinear mechanisms are utilized to increase the stroke of piezoelectric actuators and 

transform micron-scale displacements of actuators into large, millimeter-scale ones. 

Specifically, buckling is an effective way to achieve large displacements using 

piezoelectric actuators. 

Lesieutre et al. [37] demonstrated the effect of mechanical nonlinearity on the 

electromechanical transformation coefficient. The piezoelectric beam actuator showed 

an apparent coupling coefficient of 1, which corresponds to perfect electromechanical 

conversion, for the axial compressive load equal to the buckling load. 

Maurini et al. [30] proposed the multi-parameter actuation of a bistable beam 

and investigated different transition paths between two stable equilibria in terms of 

stability properties and energetic requirements. Three voltages are utilized for 

performing the multi-parameter actuation. The extensional actuating voltage works as a 

buckling load, and the other two bending actuation voltages control the transverse 

motion of the beam, and the transition between two stable equilibrium positions. 
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Dano and Hyer [28] demonstrated the actuation of bistable composite laminates 

using shape memory alloy (SMA) wires and piezocomposite actuators. The SMA wires 

showed good authority although they are difficult to integrate to bistable structures. 

Shultz et al. [20] achieved snap-through in a piezoelectrically actuated 

unsymmetric laminate in only one direction with the use of static excitation; however, 

very high voltages were applied to piezocomposite actuators even for a very compliant 

two-ply plate. 

Arrieta et al. [22] and Senba et al. [23] utilized the inertial forces of bistable 

composites to increase the effectiveness of actuation. Arrieta et al. [22] proposed a 

morphing strategy based on using external energy from dynamic perturbations on the 

structure, resulting in dynamically triggered snap-through, although reversed snap-

through was not achieved. Senba et al. [23] achieved a dynamically triggered reversed 

snap-through on a bistable plate using a surface-bonded piezocomposite actuator with 

the aid of an added mass. 

Arrieta et al. [1] presented a passive load alleviation mechanism by using a 

bistable cross-ply laminate, which has different stiffness and dynamic characteristics for 

each stable state. In a follow up study, Arrieta et al. [38] used the dynamic response of a 

cross-ply bistable laminate to achieve a full state configuration control, capable of 

inducing and reversing snap-through. Bilgen et al. [2] applied the resonant control 

technique to a bistable cross-ply composite plate with surface-bonded piezoelectric 

actuators and evaluated the control effectiveness under aerodynamic loading in a wind 

tunnel. An analytical model was also presented for the dynamic response of a 

cantilevered wing-shaped bistable composite by Arrieta et al. [17]. 

1.1.5.  Solution Methods 

The dynamical behavior of different structures such as beams, plates and shells, 

are modeled using different differential equations. Figure 1-4 represents the most 
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frequently used solution methods in the area of structural dynamics for solving these 

mathematical models.  

 
Figure 1-4. Solution methods for mathematical models of different structures. 

Structures are distributed-parameter systems and constitute an infinite number 

of particles. As a result, a partial differential equation is used to precisely describe the 

dynamical behavior of a structure in time and space. In most cases, an analytical 

solution does not exist for a partial differential equation due to the nonlinearity in the 

equation or the complexity of boundary conditions. 

Discretization methods are employed to solve partial differential equations with 

no analytical solutions. The idea is to discretize a partial differential equation into a set 

of ordinary differential equations. The most well-known discretization methods are the 

Finite Element method, the Galerkin method, the Rayleigh-Ritz method, and Modal 

Decomposition.  

Distributed-Parameter Models 
(Partial Differential Equations)

Discretization

Finite Element Method

Galerkin Method

Rayleigh-Ritz Method
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Lumped-Parameter Models 
(Ordinary Differential 

Equations)  
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Numerical Integration 
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The Finite Element method subdivides a structure into smaller elements. 

Elements can have various shapes based on the shape of structure. Each element has a 

specific number of nodes, and each node has a determined degrees of freedom. For 

instance, a node in a beam can have degrees of freedom such as horizontal 

displacement, vertical displacement, and in-plane rotation. Ordinary differential 

equations are used to describe the dynamics of variables for each node. These 

differential equations are solved simultaneously to find the overall behavior of a 

structure. The model predicts the structure response more accurately by increasing the 

number of elements. The Finite Element method is the most popular numerical 

discretization method and is used in several commercial tools, such as ANSYS, 

NASTRAN, and ABACUS to name a few. The remaining methods, the Galerkin 

method, the Rayleigh-Ritz method, and Modal Decomposition, also converts a 

continuous problem into a discrete one by assuming series-type solutions with known 

functions for the degrees of freedom. 

Another approach to describe a structure is using a lumped-parameter model. A 

lumped-parameter model simplifies the modeling of a spatially distributed structure by 

making an assumption that the structure behavior can be described using a topology 

with lumped values for mass, damping, and stiffness. The solution methods for a 

lumped-parameter model are shown in Figure 1-4.  

As mentioned, this research focuses on the constrained-energy actuation of a 

bistable structure. However, application of bistable structures is not limited to actuation 

purposes as they have been proposed for harvesting vibrational energy [39, 40]. 

Dynamical behavior of bistable structures is usually described by employing a lumped-

parameter, one-degree-of-freedom Duffing-Holmes oscillator as a governing equation 

[41]. The Duffing-Holmes equation has a nonlinear restoring force, consisting of linear 

softening and cubic hardening stiffness coefficients, that creates the bistability property. 

Analytical and numerical solution methods are used to solve this nonlinear ordinary 
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differential equation, as can be seen in Figure 1-4. The most frequently used 

approximate analytical solutions are method of harmonic balance and perturbation 

methods such as the Lindstedt-Poincaré method and the method of multiple scales [42-

44]. Also, the Runge-Kutta numerical integration method is a known time-domain 

method to solve differential equations. 

The method of harmonic balance assumes that the system response is composed 

of a number of harmonic terms. This method is specifically used to find the steady state 

response of a nonlinear ordinary differential equation subjected to a harmonic 

excitation. The accuracy of this method increases by increasing the number of 

harmonics. 

The other method to solve a nonlinear differential equation analytically is using 

perturbation methods. Perturbation methods yield a precise equation for vibrations 

with low amplitude around the equilibrium position, and they become less accurate for 

vibrations with large amplitudes. As an example, the method of multiple scales 

assumes a series-type solution for the equation. The terms in the solution have different 

time scales, including slow-scale and fast-scale terms. 

Numerical integration is the most straightforward computational method for 

time-domain simulations, and they are capable of finding a system response subjected 

to arbitrary input excitations. The Runge-Kutta numerical integration method is mostly 

employed to solve time-domain nonlinear differential equations in commercial software 

such as MATLAB [45]. 

Transient response is critical in studying the minimum energy actuation of a 

bistable structure because snap-through occurs in the transient region of the system 

response. As a result, numerical integration is used to solve the Duffing-Holmes 

equation in this dissertation since it gives both the transient and steady state responses. 
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1.2.  Motivation 

Large loads due to fluid solid interaction can lead to high bending stresses and 

fatigue failure in wings and wind turbine blades [18]. An appropriate solution for the 

mentioned problems is using a morphing bistable composite laminate for load 

alleviation. A bistable composite laminate is capable of attaining two statically stable 

shapes, and it can be designed to alleviate a critical load, such as wind gust, by 

snapping from one stable position to the other. For instance, Figure 1-1 shows an 

experimental bistable piezocomposite plate clamped at one end to form a low-aspect-

ratio wing, previously proposed by Arrieta et al. [17] and Bilgen et al. [2]. The plate is 

made out of unsymmetrical cross-ply composite laminate designed to be bistable by 

locking in residual stresses during the elevated-temperature curing process. The wing 

has a span of 240 mm, root chord of 190 mm, and tip chord of 139 mm. Two MFC 

M8557-P1 type actuators are bonded near the base of the bistable wing and are oriented 

at 0° with respect to the span axis. This wing is bistable and capable of load alleviation. 

Piezocomposite actuators are used to reverse the snap-through and bring back the 

structure to its original optimal aerodynamic shape after the gust load is alleviated. 

However, there is a limit on the size of the used piezocomposite actuator, so a severe 

force and energy constraints exist to achieve snap-through in a morphing wing, airfoil 

or a wind turbine blade. In this context, the research goal is to understand how to cause 

a bistable structure to switch its position from one stable equilibrium position to the 

other in energy and force limited scenario. The bistable wing is a starting point for this 

research; however, the analysis is conducted so that the energy-based characteristics of 

a bistable structure can be understood in general (as approximated by a Duffing-type 

oscillator.) 
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1.3.  Objectives 

The broad goal of this research is to investigate the minimum required energy for 

performing snap-through of a bistable structure [46, 47]. 

The first objective is to mathematically model a bistable structure. The well-

known one-degree-of-freedom Duffing-Holmes equation is used for this purpose. Then, 

the mathematical model is validated by building and testing a magneto-elastic beam 

subjected to harmonic excitation. 

The second objective is to investigate the required energy for performing the 

snap-through of a bistable structure. The required energy is calculated by solving the 

non-linear Duffing-Holmes equation subjected to single-tone harmonic excitation and 

noise. The energy for performing the snap-through of the experimental bistable beam is 

deduced from the tests. 

1.4.  Outline of the Dissertation 

Chapter 2 presents the mathematical modeling of a bistable structure. The 

dynamical behavior of a bistable structure is studied using a one-degree-of-freedom 

Duffing-Holmes oscillator. Next, the mathematical model is validated experimentally, 

using a cantilevered magneto-elastic bistable beam. Also, the energy calculation scheme 

for the cross-well actuation of a bistable structure is presented. 

Chapter 3 presents the energy required for the cross-well actuation of a bistable 

structure subjected to single-tone harmonic excitation. The energy is presented as a 

function of excitation frequency and damping ratio for different harmonic force 

amplitudes. The experimental results of the bistable beam subjected to single-tone 

harmonic excitation are provided.  
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Chapter 4 presents the energy required for the cross-well actuation of the bistable 

structure subjected to a single-tone harmonic signal and band-limited white noise. 

Experimental results for single-tone harmonic excitation and noise are presented. 

Chapter 5 provides a summary of the results from this research. The publications 

stemming from the research are listed, and a discussion of recommendations and future 

work is presented. 
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CHAPTER 2  

THE DYNAMICS OF A BISTABLE STRUCTURE 

2.1.  Introduction 

This chapter discusses the mathematical modeling of a bistable structure. The 

objective of this chapter is to describe the dynamical behavior of a bistable structure 

using a one-degree-of-freedom Duffing-Holmes oscillator and validate the 

mathematical model experimentally. Section 2.2 presents the mathematical modeling of 

a bistable structure. Section 2.3 presents the energy calculation scheme for the cross-well 

actuation of a bistable structure and validation of the used numerical integration 

method. Section 2.4 presents experimental results for a bistable beam subjected to 

harmonic excitation. Finally, Section 2.5 presents the conclusions of this chapter. 

2.2.  Mathematical Modeling 

In this section, the vibration of a one-degree-of-freedom bistable structure is 

modeled using a Duffing-Holmes equation. Figure 2-1 shows the assumed mechanical 

representation of the system. 
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Figure 2-1. Mechanical representation of a Duffing-Holmes oscillator. 

In the figure, 𝑚 is the mass, 𝑐 is the viscous damping coefficient, 𝑘1 is the linear 

stiffness coefficient, 𝑘2 and 𝑘3 are nonlinear stiffness coefficients, and 𝑥(𝑡) is the 

displacement. The kinetic energy (𝑇), potential energy (U), and dissipative energy (R) of 

such a system are described below. The over-dot denotes derivative with respect to 

time. 

 𝑇 =  
1

2
𝑚�̇�2 (2-1) 

 𝑈(𝑥)  =  −
1

2
𝑘1𝑥

2 +
1

3
 𝑘2𝑥

3 +
1

4
 𝑘3𝑥

4  (2-2) 

 𝑅 =  
1

2
𝑐�̇�2 (2-3) 

The governing equation of a Duffing-Holmes oscillator can be derived by using 

the aforementioned energy relations in the Lagrange equation as follows 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑥
+ 

𝜕𝑅

𝜕𝑥
= 𝐹(𝑡). (2-4) 

In the above equation, 𝐹(𝑡) is the actuation force, assumed to be proportional to 

the piezoelectric excitation voltage, where the excitation voltage is harmonic and 

𝐿 = 𝑇 − 𝑈. By inserting the energy relations in Eq. (2-4) and taking the derivative of 𝐿 
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with respect to displacement and velocity, the governing equation of motion is 

calculated as: 

 𝑚�̈� + 𝑐�̇� − 𝑘1𝑥 + 𝑘2𝑥
2 + 𝑘3𝑥

3 = 𝐹(𝑡). (2-5) 

or as  

 �̈� + 2ζωn�̇� − ωn
2𝑥 +

𝑘2

𝑚
𝑥2 +

𝑘3

𝑚
𝑥3 = 𝑓(𝑡). (2-6) 

when normalized by mass, where 휁 is the damping ratio, 𝜔𝑛 is the natural frequency 

and 𝑓 is the mass-normalized force amplitude. The restoring force, used in Eq. (2-6), 

corresponds to an asymmetric potential energy function. Potential energy function is 

symmetric when 𝑘2 = 0. By solving  
𝑑𝑈(𝑥)

𝑑𝑥
= 0 for a symmetric potential energy function, 

the stable equilibrium positions are obtained as: 

 𝑥0 = ± √
𝑘1

𝑘3
= ±√

1

𝛿
 . (2-7) 

The non-linear-to-linear stiffness coefficient is defined as 𝛿 = 𝑘3/𝑘1. Figure 2-2 

represents symmetric (𝑘2 = 0) and asymmetric potential energy functions, which have 

the same linear stiffness coefficients. For illustrative purposes, the potential wells for the 

symmetric potential energy are assumed to be located at ±10 mm and for the 

asymmetric potential energy are assumed to be located at -15 mm and 10 mm, 

respectively. 
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Figure 2-2. Symmetric and asymmetric potential energy functions with the same linear stiffness 

coefficient. 

Since the objective of this research is to find the minimum energy required for 

moving a bistable structure from one stable equilibrium position to the other, the total 

energy is calculated by the integration of the product of the excitation force and velocity 

(𝑉) over time, as shown in Eq. (2-8). 

 𝐸 = ∫ 𝐹𝑉 𝑑𝑡
𝑡1

0

 (2-8) 

2.3.  Numerical Simulations 

2.3.1.  Energy Calculation Scheme 

To identify the energy required for cross-well oscillation of the bistable system, 

as shown in Figure 1-1, the non-linear governing equation is solved for a variety of 

damping ratios, excitation frequencies, and force amplitudes using the Dormand-Prince 

numerical integration method in MATLAB implemented by the ODE45 ordinary 

differential equation solver. The forcing is 𝐹(𝑡) =  𝐹0 sin (𝜔𝑡). Static force is defined 
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as 𝐹𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐾1|𝑥0|, where 𝑥0 is assumed to be 10 mm. Also, 𝐹𝑟 and 𝜔𝑟 are defined as the 

ratio of excitation force amplitude to the static force and the ratio of excitation 

frequency to linear natural frequency, respectively. 

From previous experimental data [48], the measured natural frequencies and 

damping ratios corresponding to the two stable equilibrium positions of the bistable 

wing for State 1 are 30.5 Hz and 0.038 respectively. For State 2 they are 13.0 Hz and 

0.055 respectively. It is also known that the bistable wing has asymmetric potential 

wells. In this chapter, the stable equilibrium positions of the bistable system are 

assumed to be located at ± 10 mm. 

Figure 2-3 (a) shows the energy calculation scheme for a linear system, which is 

moved from its zero equilibrium position to 10 mm, and Figure 2-3 (b) shows the 

minimum energy required to move a bistable structure from its negative stable 

equilibrium to the unstable equilibrium. 

 
Figure 2-3. Required minimum energy for moving from the initial stable equilibrium position to the 

target displacement of 10 mm (a) in a linear system, and (b) in a nonlinear system. 

Considering kinetic energy, the total required energy for cross-well transfer of a 

bistable system will be minimal if the actuator provides force slowly, minimizing losses 

through damping, to the system until it reaches the target position. The nonlinear 
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behavior of the bistable system is compared to the linear system with the same system 

parameters (excluding the nonlinear stiffness.) Eq. (2-9) shows the linear equation of 

motion, and Eq. (2-10) represents the well-known solution to that linear system 

subjected to a harmonic force. The solution includes the summation of two different 

responses: transient response and steady-state response. The transient response has an 

exponential decaying term, and it vanishes as time increases after which the steady-

state response dominates the system response. 

 �̈� + 2휁𝜔𝑛�̇� + 𝜔𝑛
2𝑥 = 𝐹0𝑠𝑖𝑛(𝜔𝑡) (2-9) 

 𝑥(𝑡) = 𝑥ℎ + 𝑥𝑝 = 𝐴 𝑒−𝜁𝜔𝑛𝑡 sin(𝜔𝑑𝑡 + 𝜙) + 𝑋 sin (𝜔𝑡 + 𝜃) (2-10) 

where 𝑥ℎ is the solution to the homogeneous equation, and 𝑥𝑝 is the solution to the non-

homogeneous equation. The well-known amplitudes and phase angles are: 

 

A =
𝑥0  −  𝑋 sin (𝜃)

sin(𝜙)
 

𝜙 = 𝑡𝑎𝑛−1
𝜔𝑑(𝑥0  −  𝑋𝑠𝑖𝑛(𝜃))

v0  +  휁𝜔𝑛(𝑥0  −  𝑋𝑠𝑖𝑛(𝜃)) −  𝑋𝜔𝑐𝑜𝑠(𝜃)
 

(2-11) 

 

𝑋 =
𝐹0/𝐾

√(1 − 𝜔𝑟
2)2 + (2휁𝜔𝑟)

2
 

𝜃 =  𝑡𝑎𝑛−1 −2𝜁𝜔𝑟

1 − 𝜔𝑟
2 . 

(2-12) 

In the above equations, 𝑥0 and 𝑣0 represent the initial displacement and velocity, 

respectively. 

2.3.2.  Validation of the Numerical Method 

First, a linear system is solved both analytically and numerically. An example 

comparison of the solutions is shown in Figure 2-4 (a). As shown in the figure, the 

numerical and analytical solutions match. This shows the accuracy of the obtained 
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numerical solution. Additionally, computed analytical and numerical required energies 

of a linear system subjected to harmonic force of 𝐹𝑟= 0.25, for different excitation 

frequencies and damping ratios, are compared to ensure that the correct energy 

calculation method is used throughout the entire parameter domain. Figure 2-4 (b-c) 

show the analytical and numerical calculations of energy for 𝐹𝑟 = 0.25. As can be 

observed, the numerical energy function matches the analytical one. 

 
Figure 2-4. (a) Displacement vs. time for a linear system with 𝝎𝒏 = 13 Hz, 휁= 0.005, 𝑭𝒓 = 1, and 𝝎𝒓 = 0.07 

and comparison of (b) analytical energy function, (c) numerical energy function for 𝑭𝒓= 0.25. 

2.4.  Experimental Validation 

2.4.1.  Experimental Setup 

A slender cantilevered beam with an end-mounted magnet is used as an 

experimental bistable structure to validate the mathematical model. A circular 

neodymium magnet with 12.7 mm diameter is fixed to the frame where a cubic 

neodymium magnet of the same size is fixed to the end of the beam. The same magnetic 

poles are faced toward each other to create a repulsive force, leading to a magnetically 

induced bistable behavior. The experimental setup is shown in Figure 2-5. The beam is 
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excited harmonically with a shaker and placed 41 mm away from the fixed end. A load 

cell, attached between the shaker and the beam, is used to measure the applied force to 

the beam. The beam has a rectangular cross-section, and its overhang length is 305 mm. 

A laser displacement sensor, located below the beam, and an accelerometer, attached on 

the top surface of the beam, are used to measure the transverse vibrations at 185 mm 

from the fixed end. The beam stable equilibrium positions are located approximately 2.9 

mm above and 3.7 mm below the unstable equilibrium position, at a point where the 

accelerometer is located. The experiments are conducted by sweeping excitation 

frequency in both increasing and decreasing directions. 

 
Figure 2-5. The magneto-elastic cantilevered beam: a) test apparatus, and stable equilibrium states b) 

One and c) Two. 

A National Instruments (NI) data acquisition system is used to examine the 

mechanical responses of the cantilevered bistable beam. The control signal for the 

shaker is produced by an NI 9269 cDAQ module with 16 bit resolution (set to +/- 10 V 

range) at a generation rate of 2 kHz. The beam was excited for 30 cycles in order to 

minimize the effect of transient motion at each frequency, and the bistable beam 

responses during the last 20 cycles are recorded. The frequency is swept in a 12-24 Hz 

Accelerometer

Shaker

Magnets

Load Cell

Base

Laser Displacement Sensor

Stable Position 1

Stable Position 2

(a) (b)

(c)
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band in both increasing and decreasing directions. Also, the frequency is incremented 

in steps of 0.05 Hz to ensure the continuity of waveform between each frequency step; 

therefore, the disturbance (e.g. rapid accelerations) to the beam is minimized. All 

experiments were conducted without removing the beam from the clamp. As a result, 

consistent boundary conditions were achieved. The signals of interest are measured 

using a NI 9239 cDAQ module with 16 bit resolution (set to +/- 10 V range). Three 

measured signals are: the load cell output (PCB 208B02); the laser displacement sensor 

output (LM10 ANR12501, with 1 μm resolution), which measures the transverse 

displacement of the mid-line of the beam at 185 mm from the fixed end; and the output 

of the accelerometer (PCB Piezotronics U352B10.) 

In order to compare theoretical frequency response to the experimental one, the 

ratio of beam response to a specific force input should be calculated; however, the force 

input to the beam and the beam displacement and acceleration responses are measured 

at different locations, as shown in Figure 2-5 (a). The displacement and acceleration 

responses at the location of load cell can be found by multiplying the mentioned 

responses by a geometric correction factor. The geometric correction factor is the ratio of 

deflection at the load cell location to the deflection of the beam at the point where the 

accelerometer is located. This correction factor is calculated by approximating that the 

beam is vibrating in the first mode, and its transverse displacement distribution can be 

found using Euler-Bernoulli beam theory. The assumed geometric correction factor is 

0.1637, which was found by using the obtained transverse deflection formula for a 

cantilever beam subjected to a point load. Figure 2-6 shows a cantilevered beam 

subjected to a point load. Also, the transverse distribution along the beam length is 

shown in Eq. (2-13). 
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Figure 2-6. A cantilevered beam subjected to a point load. 

 

𝑦 =  
𝑃𝑥2

6𝐸𝐼
(3𝑎 − 𝑥)…..0 < 𝑥 < 𝑎 

𝑦 =  
𝑃𝑥2

6𝐸𝐼
(3𝑥 − 𝑎).....a < 𝑥 < 𝐿 

(2-13) 

First, the linear beam parameters are identified by measuring the beam 

frequency response without using any magnets. The identified parameters are effective 

mass, linear stiffness, and damping ratio. These parameters are used in the nonlinear 

system equation to predict the bistable beam frequency response. The comparison 

between experimental and predicted numerical results is presented in the next section. 

2.4.2.  Experimental Results 

Table 2-1 shows the identified parameters for the linear beam and the coefficients 

used in the Duffing-Holmes equation to predict the behavior of the bistable beam. The 

bistable beam was initially located at the top stable equilibrium, 2.9 mm, before the 

frequency sweep started. It is approximated that the stable equilibrium positions are 

located symmetrically at 2.9 mm below and above the unstable position at the location 

of the accelerometer due to employing the symmetric potential energy function to find 

the nonlinear restoring force in the Duffing-Holmes equation. The approximated stable 

equilibrium positions are multiplied by the geometric correction factor to yield the 

locations of stable equilibriums at the position of the load cell. Then, the nonlinear 

stiffness coefficient, 𝑘3, is obtained by using Eq. (2-7). 
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Table 2-1. Identified linear beam parameters and parameters used for the bistable beam. 

Parameter Linear System Bistable 
System 

m (kg) 16.5 16.5 

𝐤𝟏 (N/m) 1.77*10
5
 -1.59*10

5
 

𝐤𝟑 (N/m) 0 7.10*10
11

 

𝜻 0.006 0.125 

 

 

As represented in Table 2-1, the bistable system linear stiffness and damping 

ratios are different from the identified ones for the linear system. The linear stiffness 

was corrected by a factor of 0.9 because the obtained theoretical frequency response 

underpredicts the frequency where the jump phenomenon occurs by using the 

identified linear stiffness. Also, the damping ratio was increased to decrease the 

discrepancy between theoretical and experimental frequency responses of the bistable 

beam. The bistable system was simulated with initial displacement at the top stable 

position and zero initial velocity for 200 cycles at each frequency. The system time 

response in the last 25 cycles was used to calculate the frequency response. 

Figure 2-7 (a-b) present the ratio of displacement standard deviation (STD) to 

force STD and the ratio of acceleration STD to force STD. 



www.manaraa.com

27 

  

  

 
Figure 2-7. Numerical and experimental frequency responses: (a) displacement standard deviation to 

force standard deviation (b) acceleration standard deviation to force standard deviation. 

As represented in Figure 2-7 (a), a good match exists between the experimental 

and the numerical frequency responses below the frequency of 16.7 Hz where the jump 

phenomenon occurs. The numerical model overpredicts the system response for the 

frequencies higher than the jump phenomenon frequency. Also, the numerical model 

does not predict a few isolated experimental points with a large displacement to force 

ratio in the 16.75-16.85 Hz band.  

The acceleration frequency responses are shown in Figure 2-7 (b). A small 

mismatch exists between the numerical and the experimental acceleration frequency 

responses in the whole frequency band, and the mismatch is specifically larger for 

frequencies higher than 21 Hz. As observed in Figure 2-7 (a-b), the theoretical model 

predicts the bistable beam frequency responses with an acceptable accuracy although 

discrepancies exist between the experimental and the numerical results, specifically at 

high frequencies. This is expected because the beam is a distributed parameter system, 

and it is reasonable to assume that the second and third modes have a measurable effect 

on the beam near its first mode. 
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Phase portraits with Poincaré points are plotted to check the dynamical behavior 

for the bistable beam at different frequencies. Figure 2-8 represents numerical and 

experimental phase portraits at 16.8 Hz. 

 
Figure 2-8. Phase portraits at the frequency of 16.8 Hz: (a) numerical (b) experimental. 

As can be observed in Figure 2-8 (a), the theoretical model predicts a single-well 

oscillation for the system although the bistable beam is oscillating back and forth 

between two potential wells, as shown in Figure 2-8 (b). The system response at this 

frequency belongs to the few isolated points located in Figure 2-7 (a). As expected, it 

seems that the theoretical model is not able to predict the exact dynamical behavior at 

this frequency and the other points in 16.75-16.85 Hz band. Phase portraits are also 

plotted at three other frequencies. Figure 2-9 shows the numerical and the experimental 

phase portraits at the frequencies of 14, 17 and 22 Hz. These frequencies are selected 

from three different points in the entire frequency range and are far from each other. 
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Figure 2-9. Phase portraits at the frequency of 14 Hz: (a) numerical (b) experimental; 17 Hz: (c) 

numerical (d) experimental; 22 Hz: (e) numerical (f) experimental (equal horizontal scale for all plots). 

As represented in Figure 2-9 (a-b), both numerical and experimental results 

predict a period-one single well oscillation at 14 Hz.  The experimental and numerical 

phase portraits in Figure 2-9 (c-d) are very similar, but they appear to have different 

Poincaré points. This is mainly because the sampling rate for the numerical simulation 

(100 kHz) is much larger than the experimental sampling rate (2000 Hz). Both phase 

portraits in Figure 2-9 (e-f) demonstrate single-well periodic oscillation, but the 

numerical model overpredicts displacement and velocity amplitudes. As observed in 

Figure 2-9, the theoretical model predicts correct time responses in the entire frequency 

range except for a few frequencies in 16.75-16.85 Hz range. 

A displacement bifurcation diagram can be plotted to obtain an overall picture of 

the bistable system behavior in the entire frequency range. Figure 2-10 shows the 

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6 0.8

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6 0.8

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)
V

e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6 0.8

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6 0.8

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20
V

e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6 0.8

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)

(a) (b)

(c) (d)

(e) (f)

0 0.2 0.4 0.6

-20

0

20
V

e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)

0 0.2 0.4 0.6

-20

0

20

Displacement (mm)

V
e
lo

c
it
y
 (

m
m

/s
)



www.manaraa.com

30 

  

  

numerical and the experimental displacement bifurcation diagrams, which are sampled 

displacement responses at different frequencies. 

 
Figure 2-10. Bifurcation diagrams from: (a) numerical and (b) experimental results. 

Figure 2-10 (a) shows the numerical bifurcation diagram. The system has 

periodic solutions in the entire range except at the frequencies close to 16.7 Hz where 

multiple responses, including negative values, exist at a single frequency. This means 

that the system may have periodic responses with a period larger than the excitation 

frequency, and the system snaps from a positive stable equilibrium to a negative one. 

Figure 2-10 (b) represents the experimental bifurcation diagram. As can be seen, 

experimental and numerical results look very similar, except at the frequencies around 

16.7 Hz. This was demonstrated earlier as the numerical frequency results did not 

predict correct dynamical behavior for a few frequencies in the 16.75-16.85 Hz range. 

Apart from 16.7 Hz in the experimental bifurcation diagram, the sampled responses 

look like small blocks of dots that get wider at higher frequencies. This mainly results 

from the fact that the experimental time resolution is not small enough to predict 

sampled responses precisely, so sampled responses appear to fluctuate instead of being 

a single line. This is not seen in the numerical bifurcation diagram since a time 
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resolution of 10−5 s was used. Figure 2-11 represents numerical bifurcation diagrams 

for different damping ratios. 

 
Figure 2-11. Numerical bifurcation diagrams for the damping ratios of: (a) 0.11 (b) 0.12, (c) 0.125 (d) 

0.135. 

Figure 2-11 is presented to explain why a damping ratio of 0.12 was selected for 

numerical calculation of frequency response. As can be observed in Figure 2-11 (a), 

there is a large frequency band where the system is doing cross-well oscillation for 

damping ratios less than 0.12. The number of points capable of doing cross-well 

oscillation decreases by increasing the damping ratio from 0.11 to 0.135 in Figure 2-11 

(b-d). There is no point capable of doing cross-well oscillation in the entire frequency 

range for the damping ratio of 0.135, as represented in Figure 2-11 (d). Figure 2-11 

highlights the sensitivity of the bistable system to damping ratio and also shows that a 

proper value was estimated for modeling the system. 

(a)

(c)

(b)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

10 15 20 25

-0.5

0

0.5

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(m
m

)

(c) (d)



www.manaraa.com

32 

  

  

Overall, there is a good match between predicted numerical results and 

experimental frequency responses. A number of important issues exist that are 

responsible for the discrepancy between experimental and numerical results. First, a 

mathematical model with symmetric potential wells was used to model the 

experimental response although it is known that the bistable beam potential wells are 

located asymmetrically around the unstable position. Second, a one-degree-of-freedom 

model is used for the bistable beam by assuming that the bistable beam is vibrating in 

the first mode. The differences between numerical and experimental results increase at 

higher frequencies as the contributions from higher modes of the motion increase at 

these frequencies, so a single-mode vibration assumption creates differences between 

numerical and experimental results when the bistable beam has other modes of 

vibration in addition to the first mode. 

Based on the comparison between the numerical and the experimental results, it 

is verified that the Duffing-Holmes equation is able to predict the response of a bistable 

structure. Therefore, the cross-well actuation energy analysis is presented in the next 

chapter by solving this nonlinear equation for different parameters. 

2.5.  Conclusions 

In this chapter, the dynamical behavior of a bistable structure is modeled using 

the one-degree-of-freedom Duffing-Holmes oscillator. Experiments are conducted on a 

bistable beam to validate the mathematical model. Experimental and theoretical 

frequency responses, including the ratios of displacement to force and acceleration to 

force, are compared to each other. In addition, experimental and theoretical phase 

portraits are plotted to determine whether a correct dynamical behavior is predicted by 

the mathematical model at different frequencies. A good match exists between 

theoretical and experimental results. 
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CHAPTER 3  

SINGLE-TONE HARMONIC EXCITATION  

3.1.  Introduction 

This chapter seeks to understand how the required energy for cross-well 

oscillation varies by changing damping ratio and excitation frequency for different 

values of excitation force amplitudes. The excitation considered is a single-tone 

harmonic signal. Parameter values for studying the required energy for cross-well 

actuation are presented in Section 3.2. Section 3.3 presents energy functions for the 

linear system subjected to different force amplitudes. Section 3.4 presents energy results 

for the bistable structure. The energy functions for linear and bistable systems are 

compared in Section 3.5. Conclusions are presented in Section 3.6. 

3.2.  Parametric Analysis Method 

Three different force amplitudes are considered: one quarter of the static force, 

equivalent to the static force, and 1.5 times the static force. It is re-emphasized that this 

research considers a generic bistable system represented by the Duffing-Holmes 

oscillator. As a result, the exact kinematic or distributed-parameter nature of the system 

is not of concern. Table 3-1 shows the range of parameters used for numerical 

simulations. 
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Table 3-1. Parameters for numerical simulations. 

Parameter Range 

m (kg) 1.00 

𝛚𝐧 (Hz) 13.0 

𝜻 0 - 1 

𝐤𝟏 (N/m) 𝜔𝑛
2 

δ 1.00*10
4
 

𝐤𝟑 (N/m) 6.67*10
3
 

𝑭𝒓 = 𝑭𝟎/𝑭𝒔𝒕𝒂𝒕𝒊𝒄 0.250,1.00, 1.50 

𝛚𝐫 = 𝛚/𝛚𝐧 0 - 10 

 

3.3.  Linear System Energy Behavior 

3.3.1.  Force Ratio of 0.25 

Figure 3-1 shows the minimum energy required for moving the linear system 

with a harmonic excitation force amplitude equivalent to the one-fourth of static force 

from its zero equilibrium position to the target displacement of 10 mm. 

 
Figure 3-1. Total energy of an under-actuated linear system with 𝑭𝒓  = 0.25 as a function of frequency 

ratio and damping ratio. 

The energy function in Figure 3-1 is divided into several levels. If the excitation 

frequency is close to the natural frequency, the linear system can reach the target 
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displacement in the transient region of the response in a various number of cycles, 

which creates discrete jumps in the total energy. 

Figure 3-2 shows time histories of displacements for three different linear 

systems with the same force amplitudes and excitation frequencies but with small 

difference in damping ratios. As represented in the figure, three linear systems with the 

corresponding damping ratios of 0.115, 0.120, and 0.125 reach the target displacement of 

10 mm in 6, 8, and 14 half cycles, respectively, and calculated energies are 1.27 J, 1.75 J, 

and 3.23 J. Figure 3-2 also shows that a small change in damping ratio results in a large 

change in the required energy; this is of course a consequence of the fact that the system 

is so-called “under-actuated” from a static sense. 

 
Figure 3-2. Displacement time history for the linear system until displacement reaches the target value 

of 10 mm with 𝑭𝒓 = 0.25, excitation frequency ratio of 0.97, and damping ratios of (a) 휁 = 0.115 (b) 휁 = 

0.120 (c) 휁 = 0.125. 

Figure 3-3 (a) presents the number of zero-velocity crossings until the system 

reaches the target displacement as an indication of the total time that is required to 

reach the objective position. Discrete energy levels are clearly identified by a discrete 

number of zero-velocity crossings (as indicated by labels 2, 3, 4,… in the figure.) Figure 

3-3 (b) shows the number of half cycles obtained by considering excitation time period 
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as a cycle time period. Figure 3-3 (a-b) are not exactly the same because the number of 

zero-velocity crossings and the number of half cycles are different from each other. The 

number of zero-velocity crossings is equal to the number of peaks and valleys of the 

total response while the number of half cycles is found by dividing the time that it takes 

for a system to reach objective displacement by the excitation period. Although the 

number of half cycles is a more direct measure of elapsed time, it is not always 

applicable to the potential response of a non-linear system since a non-linear system can 

have a non-periodic response with the application of a periodic force. For this reason, 

and for consistency, the number of zero-velocity crossings is used to evaluate elapsed 

time with respect to excitation period. 

 
Figure 3-3. Response of an under-actuated linear system with 𝑭𝒓 = 0.25 as a function of frequency ratio 

and damping ratio: (a) number of zero-velocity crossings (b) number of half cycles. 

Normalized Amplitude 

A normalized amplitude, 𝑋, is defined as 
𝑋0𝐾

𝐹0
 , where 𝐹0 is the force amplitude 

and 𝑋0 is the steady state response amplitude of 10 mm. The relation between frequency 

ratio and damping ratio for a specific harmonic force amplitude and a steady state 
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response amplitude can be found by using the steady state response amplitude relation 

in Eq. (2-12). For any 𝐹𝑟 and 𝑋0 = 10 mm, 𝑋 is equal to 
1

𝐹𝑟
. The relation between damping 

ratio and excitation frequency ratio for 𝑋 = 
1

𝐹𝑟
 = 4 is found and represented in Eq. (3-1): 

 (1 − 𝜔𝑟
2)2 + (2휁𝜔𝑟) 

2 = 
1

𝑋
2 =

1

16
 (3-1) 

The curve for 𝑋 = 4 is plotted in Figure 3-3 (a) using Eq. (3-1). The points on the 

curve have a steady state amplitude equal to 10 mm, and the points inside the curve 

have steady state amplitudes larger than 10 mm. As can be observed in Figure 3-3 (a), 

all the points inside 𝑋 = 4 are able to reach the target displacement of 10 mm. There are 

also sub-domains of parameters outside 𝑋 = 4 where the linear system is able to reach 

objective displacement although the sub-domain’s steady state response amplitudes are 

less than 10 mm. This is because the linear system reaches the target displacement in the 

transient region of the response, and the transient response peaks for these points are 

equal or larger than 10 mm. As a result, it is shown that 𝑋 = 4 gives a good estimate but 

not a complete one for the regions of damping ratio and excitation frequency, where a 

linear system is able to reach the objective displacement for 𝐹𝑟 = 0.25. 

Normalized Damping Energy 

Two different views of the ratio of damping energy to the total energy are 

plotted in Figure 3-4. The color bar in Figure 3-4 shows the color distribution 

proportional to the number of zero-velocity crossings at each point. As can be seen in 

the figures, normalized damping energy varies from zero to 88%. The normalized 

damping energy values are large for the regions where total energy is large because a 

linear system takes longer to the objective displacement when it is located in the high 

energy regions. Consequently, a larger amount of energy is dissipated through 

damping when the time increases. 
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Figure 3-4. Response of an under-actuated linear system with 𝑭𝒓 = 0.25 as a function of frequency ratio 

and damping ratio: (a) zero degree azimuth angle view (b) ninety degree azimuth angle view. 

3.3.2.  Force Ratio of 1 

By equating the harmonic force amplitude to the static force, the energy function 

becomes less quantized. There are low energy and high energy levels in Figure 3-5 (a) 

separated by a line. The same line can be seen in Figure 3-5 (b). It is shown that the 

section of the energy function with a lower energy level (no zero-velocity crossing) 

reaches the unstable equilibrium point with a lower number of zero-velocity crossings, 

compared to the part with higher energy level (one zero-velocity crossing.) All of the 

points capable of reaching the objective displacement are located below the 휁 = 0.707 

line. A linear system with a damping ratio larger than 휁 = 0.707 does not have a 

resonant peak in the frequency domain, and the system response has the maximum 

steady state amplitude when a static force is applied to it. Therefore, increasing 

excitation frequency to natural frequency does not increase the linear system response 

peak for damping ratios larger than 휁 = 0.707. 

(a) (b)
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Figure 3-5. Response of a linear system with 𝑭𝒓 = 1 as a function of frequency ratio and damping ratio: 

(a) Total energy, and (b) number of zero-velocity crossings. 

Additionally, there is a small region in the bottom left corner of Figure 3-5 (b), 

where the system has a response with multiple zero-velocity crossings. For small 

damping ratios, the transient response decays slowly, and this creates local extrema in 

the system response. The velocity sign changes around these local extrema and crosses 

zero value. Figure 3-2 (a) shows the response of a linear system with low frequency 

ratio and low damping ratio, belonging to the left bottom corner region of Figure 3-5 

(b). As can be seen in Figure 2-4 (a), the system has four local extrema (two minima and 

two maxima) until it reaches a displacement value of 10 mm, so the number of zero-

velocity crossings is four although the system reaches the target displacement in a 

quarter of a cycle. Also, 𝑋 = 1 in Figure 3-5 (b) represents linear systems that have steady 

state response amplitude of 10 mm for 𝐹𝑟 = 1. All the points inside 𝑋 = 1 have steady 

state response amplitude larger than 10 mm and are capable of reaching the target 

displacement. 

0

2-6

1

 = 

4 2

3

(a) (b)

9



www.manaraa.com

40 

  

  

3.3.3.  Force Ratio of 1.5 

Figure 3-6 shows the energy function and number of zero-velocity crossings for a 

linear system subjected to a harmonic excitation with amplitude that is 1.5 times the 

static force amplitude. 

 
Figure 3-6. Response of a linear system with 𝑭𝒓 =1.5 as a function of frequency ratio and damping ratio: 

(a) Total energy, and (b) number of zero-velocity crossings. 

As expected, the energy function shows a single energy level in Figure 3-6 (a) 

since the excitation force amplitude is 1.5 times the static force. Here, we note the 

number of zero-velocity crossings is two for the bottom left corner of Figure 3-6 (b); this 

is the same behavior that was observed in Figure 3-5 (b). 𝑋 = 0.595 (𝐹𝑟 = 1.68) estimates 

more complete ranges of damping ratio and excitation frequency, capable of reaching 

objective displacement, for 𝐹𝑟 = 1.5. Finally, it is logically concluded that the jumps and 

discontinuities in total energy decrease by increasing the force amplitude. It is also 

clearly demonstrated that a statically under-actuated linear system will reach a desired 

displacement over time given that it is equal or below the steady-state amplitude; 

2

0
= 0.595

(a) (b)
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however, an energy-limited (fixed-capacity) system may “run-out-of-steam” due to 

wasting energy towards dissipative components. 

3.4.  Bistable System Energy Behavior 

The response of the bistable system to harmonic excitation is first investigated by 

plotting phase portraits of a system with different damping ratios and subjected to 

different harmonic force amplitudes and excitation frequencies. Figure 3-7 shows 

various interesting phase portraits of a bistable system having its stable equilibriums 

located at ± 10 mm. Figure 3-7 (a-b) show the response of an under-actuated system 

(𝐹𝑟  = 0.25). Figure 3-7 (a) represents a periodic single-well oscillation of a system with 휁 = 

0.25 and 𝜔𝑟 = 1. By decreasing 휁 to 0.151 and increasing 𝜔𝑟 to 1.08, the system oscillates 

back and forth between two stable potential wells, as shown in Figure 3-7 (b). Figure 3-7 

(c, e) illustrate the bistable system with the same parameters as in Figure 3-7 (a) except 

that it is subjected to larger force amplitudes, 𝐹𝑟  = 1 and 𝐹𝑟  = 1.5, respectively. The 

system response changes from a single-well oscillation to a periodic cross-well 

oscillation by increasing 𝐹𝑟  from 0.25 to 1, as can be observed in Figure 3-7 (c). Further 

increasing 𝐹𝑟 to 1.5, the system in Figure 3-7 (e) has a cross-well oscillation with larger 

displacement amplitude compared to cross-well oscillation shown in Figure 3-7 (c). 

Figure 3-7 (f) demonstrates the chaotic cross-well oscillation for the system with 𝐹𝑟 = 1.5, 

휁 = 0.005 and 𝜔𝑟 = 2.61. 
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Figure 3-7. Example phase portraits of a bistable system with (a) 𝑭𝒓 = 0.25, 𝝎𝒓 = 1, 휁 = 0.25 (b) 𝑭𝒓 = 0.25, 

𝝎𝒓 = 1.08, 휁 = 0.151 (c) 𝑭𝒓 = 1, 𝝎𝒓 = 1, 휁 = 0.25 (d) 𝑭𝒓 = 1, 𝝎𝒓 = 1.23, 휁 = 0.605 (e) 𝑭𝒓 = 1.5, 𝝎𝒓 = 1, 휁 = 0.25 (f) 

𝑭𝒓 = 1.5, 𝝎𝒓 = 2.61, 휁 = 0.005 (equal horizontal scale for all plots). 

Figure 3-7 demonstrates that a variety of types of oscillations can be achieved 

depending on the system parameters and forcing. The complete possibilities of response 

of the bistable system are parametrically studied for three different harmonic force 

amplitudes. 

3.4.1.  Force Ratio of 0.25 

Figure 3-8 (a) shows the energy function for a bistable system in response to a 

harmonic force with the force amplitude equal to one-quarter of the static force. 

Additionally, Figure 3-8 (b) shows that different energy levels correspond to a discrete 

number of zero-velocity crossings. 
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Figure 3-8. Response of an under-actuated bistable structure with 𝑭𝒓  = 0.25 as a function of frequency 

ratio and damping ratio: (a) Total energy (b) number of zero-velocity crossings; normalized damping 

energy: (c) zero degree azimuth angle view (d) ninety degree azimuth angle view. 

In most cases, for 𝐹𝑟 = 0.25, the bistable system with damping ratio of less than 

0.16 and excitation frequency ratio between 0.5 and 1.7 is able to achieve a cross-well 

transfer, as shown in Figure 3-8 (a). The energy is quantized into different levels, and it 

is also highly scattered due to the nonlinear nature of the system. For instance, there is a 

small region around the excitation frequency ratio of 0.6, where the bistable structure 

can do cross-well oscillation. 𝑋 = 4 was added to Figure 3-8 (b) to compare linear and 

bistable systems, and it can be observed that the bistable system has a different range of 

damping ratios and frequency ratios capable of reaching the target displacement. 
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Figure 3-8 (c-d) present two different views of the normalized damping energy 

for an under-actuated bistable structure. Maximum normalized damping energy is 48%, 

which is much lower compared to the under-actuated linear system with a maximum 

normalized damping energy of 88%. Also, damping energy is large for high levels of 

total energy, similar to the under-actuated linear system. 

3.4.2.  Force Ratio of 1 

Figure 3-9 shows the response of the system subjected to the force amplitude 

equal to the static force. The bistable structure is able to achieve cross-well oscillation in 

a much wider range of excitation frequencies and damping ratios, compared to the case 

where force amplitude is less than the static force. Additionally, the energy levels are 

highly quantized for the excitation frequency ratios between 2 and 3. Using 𝑋 = 1 as a 

criterion, it can be seen that the bistable system has a wider range of damping ratios and 

excitation frequencies that are able to reach the target displacement, compared to the 

linear system subjected to the same force amplitude. 
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Figure 3-9. Response of a bistable structure with 𝑭𝒓 = 1 as a function of frequency ratio and damping 

ratio: (a) Total energy, and (b) number of zero-velocity crossings. 

3.4.3.  Force Ratio of 1.5 

Figure 3-10 represents the energy function of a bistable system subjected to 

harmonic force with 𝐹𝑟 = 1.5. The energy function in Figure 3-10 (a) looks similar to the 

one in Figure 3-9 (a) except that the energy is less quantized for the frequency ratios 

between two and three. It can be observed in Figures 3-6 to 3-8 that the energy function 

becomes more continuous and the range of damping ratio and excitation frequency 

ratio, capable of achieving cross-well oscillation, increase by increasing the force 

amplitude. The bistable structure response shown in Figure 3-10 has a larger range of 

damping ratio and excitation frequency compared to the linear system response shown 

in Figure 3-6, which can also be seen by checking 𝑋 = 
2

3
 in both figures. 
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Figure 3-10. Response of a bistable structure with 𝑭𝒓 = 1.5 as a function of frequency ratio and 

damping ratio: (a) Total energy, and (b) number of zero-velocity crossings. 

3.5.  Comparison of the Linear and the Non-Linear Systems 

For 𝐹𝑟 = 0.25, a linear system has an energy function that is divided into several 

levels, and a bistable structure has a scattered energy function with a small 

disconnected region around an excitation frequency ratio of 0.6. Figure 3-11 presents the 

number of zero-velocity crossings of the linear and the bistable systems subjected to 𝐹𝑟 = 

0.25. The under-actuated bistable structure has different ranges of excitation frequency 

and damping ratio when compared to the linear system subjected to the same force 

amplitude. 
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Figure 3-11. Number of zero-velocity crossings of under-actuated systems with 𝑭𝒓 = 0.25 (a) a linear 

system (b) a bistable structure. 

Figure 3-12 presents the number of zero-velocity crossings of the linear and the 

bistable systems subjected to 𝐹𝑟 = 1. For 𝐹𝑟 = 1, the energy function for the linear system 

has two main energy levels, a high energy level and a low energy level. The energy 

function is less quantized compared to the energy function for 𝐹𝑟 = 0.25 and includes a 

wider range of excitation frequency ratio and damping ratio. For a bistable structure 

subjected to the same amount of force, the energy is continuous for a large domain and 

is quantized for large excitation frequency ratios. 
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Figure 3-12. Number of zero-velocity crossings of systems with 𝑭𝒓 = 1 (a) a linear system (b) a bistable 

structure. 

Figure 3-13 presents the number of zero-velocity crossings of the linear and the 

bistable systems subjected to 𝐹𝑟 = 1.5. The linear energy function is continuous for 𝐹𝑟 = 

1.5. For a bistable structure subjected to 𝐹𝑟 = 1.5, energy is continuous except for a small 

quantized region. 
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Figure 3-13. Number of zero-velocity crossings of systems with 𝑭𝒓  = 1.5 (a) a linear system (b) a 

bistable structure. 

Table 3-2 summarizes the ranges of frequency ratios at zero damping and 

damping ratio at resonant frequency capable of reaching the target displacement for the 

linear and the bistable systems. 

Table 3-2. The ranges of damping ratio and frequency ratio, capable of reaching target displacement, 

for the linear and bistable systems. 

𝑭𝒓 
𝝎𝒓 at 𝜻 = 𝟎 𝜻 at 𝝎𝒓= 1 

(Linear) (Bistable) (Linear) (Bistable) 

0.25 0.760 - 1.24 
0.580 - 0.680 

0.910 - 1.690 
0 - 0.125 0 - 0.111 

1.0 0 - 1.93 0 - 3.19 0 - 0.500 0 - 0.735 

1.5 0 - 2.44 0 - 3.77 0 - 0.825 0 < 휁∗ < ∞  

 

To achieve cross-well oscillation, damping ratio and excitation frequency can be 

selected using Table 3-2 as: 0.58 < 𝜔𝑟 < 0.68 and 0.91 < 𝜔𝑟 < 1.69 at 휁 = 0 and 0 < ζ < 

0.11 at  𝜔𝑟 = 1 for 𝐹𝑟 = 0.25, 0 < 𝜔𝑟 < 3.19 at 휁 = 0 and 0< ζ < 0.73 at  𝜔𝑟 = 1  for 𝐹𝑟 = 1, 

and 0 < 𝜔𝑟 < 3.77 at 휁 = 0 and 0< ζ < 1 at  𝜔𝑟 = 1 for 𝐹𝑟 = 1.5. To ensure that minimum 
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amount of energy is spent to switch position, it is recommended to select damping ratio 

and excitation frequency from a narrower range as: 0.95 < 𝜔𝑟 < 1.53 at 휁 = 0 and 0 

< ζ < 0.053 at 𝜔𝑟 = 1.24 for 𝐹𝑟 = 0.25, 0 < 𝜔𝑟 < 2.14 at 휁 = 0 and 0 < ζ < 0.69 at 𝜔𝑟 = 1.07 

for 𝐹𝑟 = 1, and 0 < 𝜔𝑟 < 2.68 at 휁 = 0 and 0 < ζ < 0.76 at 𝜔𝑟 = 1.34 for 𝐹𝑟 = 1.5. 

3.6.  Conclusions 

In this chapter, the energy required to actuate a bistable structure to move from 

one stable equilibrium position to the other in an energy and force limited scenario is 

investigated. To better understand the nonlinear behavior of a bistable structure, a 

linear system was also investigated. Both systems are excited by a single-tone harmonic 

force. Energy is studied as a function of damping ratio and frequency ratio for different 

force amplitudes because these non-dimensional parameters dictate the system 

response, and the system natural frequency and stable equilibrium positions do not 

change with the variation of the mentioned parameters. 

For a linear viscously damped mechanical oscillator, it is observed that the 

energy function is quantized because reaching target displacement occurs during the 

transient region of the response, and the energy function becomes more continuous and 

less quantized by increasing the force amplitude. Also, applying a dynamic force (i.e. 

harmonic excitation) to a system makes it possible to reach displacement amplitudes 

that cannot be reached by applying static forces. 

For a bistable structure, the required energy for cross-well oscillation is shown to 

vary with damping ratio and excitation frequency for different values of excitation force 

amplitudes. For the force amplitude less than the static force, the energy function is 

scattered and divided into several energy levels. By increasing the force amplitude to 

the static force and larger values, the ranges of excitation frequency ratios and damping 
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ratios able to achieve cross-well oscillation increase significantly, and the energy 

function becomes much more continuous. 
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CHAPTER 4  

HARMONIC AND RANDOM EXCITATION 

4.1.  Introduction 

The required energy for the cross-well actuation of a bistable structure, subjected 

to a single-tone harmonic excitation, was investigated in Chapter 3. The generated 

harmonic signals with the experimental devices always have some level of noise and 

are not purely single-tone [49]. So, it is necessary to study the required energy for 

performing the snap-through using a multi-tone excitation. A multi-tone signal can be 

created by the combination of harmonic and random signals. Iyengar [50] presented the 

analytical and numerical response of a Duffing-Holmes oscillator, subjected to 

combined harmonic and random excitation. 

This chapter presents the parametric energy study for a bistable structure, 

subjected to a combined signal. Section 4.2 presents the design of a low-pass filter and 

generation of a band-limited noise. The parameter values used for energy analysis are 

provided in Section 4.3. Sections 4.4-4.5 provide the energy results for the linear and 

bistable systems. Section 4.6 presents the comparison between the energy functions for 

the linear and the bistable systems. Section 4.7 presents the experimental results for the 

multi-tone excitation of the bistable beam. Finally, Section 4.8 presents the conclusions 

of this chapter. 

4.2.  Generation of a Band-Limited Noise  

A multi-tone signal is generated by combining a single-tone harmonic signal and 

a band-limited white noise. Band-limited white noise is generated by filtering a white 
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noise signal. The designed filter has cut-off and stopband frequencies of 𝜔𝑐 = 50 Hz and 

𝜔𝑠 = 110 Hz, respectively. The stopband attenuation for the digital filter is 80 dB. The 

optimal equiripple design technique is used for this purpose since the band frequencies 

(𝜔𝑐 and 𝜔𝑠) can be specified precisely in this design. This technique is implemented in 

MATLAB by the Parks-McClellan algorithm as a function called firpm [51-53]. Figure 4-1 

(a-b) show the power spectrum of white noise force signal with standard deviation 

(STD) of 1 N and filtered noise signal, respectively. As can be seen in Figure 4-1 (a), the 

white noise signal has a constant power spectral density and the signal power is the 

same at all frequencies. Figure 4-1 (b) represents the filtered white noise signal. The so-

called colored noise signal power is the same as the white noise signal for the 

frequencies less than 50 Hz (the passband frequency.) The signal power starts 

decreasing at 50 Hz, and the power attenuation of 80 dB is observed for frequencies 

above 110 Hz. The passband and stopband frequencies, 50 Hz and 110 Hz, are 

represented with vertical red lines in Figure 4-1 (b). 
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Figure 4-1. Power spectrum of: (a) white noise signal with STD of 1N (b) filtered white noise. 

Figure 4-2 (a-c) present multi-tone signals with different levels of noise. The 

signals are the combinations of an under-actuated harmonic force with 𝐹𝑟= 0.25 at 13 Hz 

and different levels of colored noise with 50 Hz passband frequency and 110 Hz 

stopband frequency. The ratios of noise STD to harmonic force STD are 0.2, 0.4, and 0.8. 
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Figure 4-2. Multi-tone force with 𝑭𝒓 = 0.25, and noise STD to harmonic STD ratio of (a) 0.2 (b) 0.4 (c) 

0.8. 

4.3.  Experimental Results 

In this section, the frequency responses of a linear beam and a bistable beam 

subjected to multi-tone excitations are presented. The objective is to validate the 

mathematical model used for the investigation of required energy for performing snap-

through of a bistable structure subjected to multi-tone excitations with different levels 

of noise. The experimental setup is shown in Section 4.3.1. The experimental results for 

linear and a bistable beams are presented in Sections 4.3.2 and 4.3.3, respectively. 

4.3.1.  Experimental Setup 

A new experimental setup, similar to that shown in Figure 2-5, is used to obtain 

the results in this chapter. First, the laser displacement sensor is moved from 185 mm to 

105 mm from the clamped end. The charge amplifiers are replaced by a different 
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amplifier (PCB 482A20), but the amplification gains for the measured force and 

acceleration signals remain the same as before. Also, a low-pass filter device 

(WAVETEK 852) is added to the experimental setup. The force signal is passed through 

the filter before being sent to the shaker. The cut-off frequency of the filter is set to be 50 

Hz. Figure 4-13 shows the experimental setup. The stable equilibrium positions are 

located approximately 1.13 mm below and above the unstable position at the location of 

the laser displacement sensor. As can be seen in the figure, the laser is located at a closer 

position to the base compared to the previous setup. 

 
Figure 4-3. The new experimental setup: a) test apparatus, and stable equilibrium states: b) One and c) 

Two. 

4.3.2.  Linear Beam 

The linear beam frequency response is measured in the 5-35 Hz frequency band 

to identify the linear system parameters. 

Pure Noise Excitation 

First, different levels of white Gaussian noise signals are generated and passed 

through the filter to ensure that the low-pass filter is working properly. Figure 4-4 

presents the power spectra of three filtered pure noise excitation signals with STDs of 
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1.3 N, 2.9 N, and 5.3 N. As can be seen in the figure, the signal power starts attenuating 

at 50 Hz, and the attenuation continues up to the frequency of around 110 Hz.  

 
Figure 4-4. Power spectra of three filtered noises with STDs of: 1.3 N, 2.9 N, and 5.3 N. 

Figure 4-5 shows the Fast Fourier Transforms (FFT) of the shown signals in 

Figure 4-4. The noise amplitude is very low for the frequencies above 50 Hz and gets 

close to zero for the frequencies above 80 Hz.  
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Figure 4-5. FFTs of filtered noise signal with STDs of: 1.3 N, 2.9 N, and 5.3 N. 

The low-pass filter works properly and properly filters the frequency content of a 

signal above 50 Hz. 

Multi-tone Excitation 

Figure 4-6 shows the ratios of displacement to force for a linear beam subjected 

to multi-tone excitation having different levels of noise. The multi-tone signals have the 

same harmonic force amplitude of 5.6 N and are different in the level of noise. The noise 

standard deviations for the multi-tone signals are 1.3 N, 2.4 N, 5.3 N, and 6.7 N. 
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Figure 4-6. Ratios of displacement STD to force STD and displacement FFT to force FFT for multi-tone 

signals with noise STDs of: 1.3 N, 2.4 N, 5.3 N, and 6.7 N. 

Two types of displacement to force ratios are represented in Figure 4-6. The first 

one is the ratio of displacement STD to force STD for different noise levels. 

Displacement STD and force STD are obtained by finding the STD of recorded time 

histories of force and displacement signals at each frequency. The second metric is the 

ratio of displacement FFT peak value to force FFT peak value. First, the FFTs of 

excitation force and displacement signals are found at each frequency. Then the 

maximum values for force and displacement within 0.5 Hz above and below that 

frequency in the frequency domain are deduced. These values represent the amplitude 

of the harmonic components of multi-tone signals. Figure 4-7 presents the ratio of 

displacement to force for multi-tone excitation with different harmonic amplitudes and 
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the same level of noise with STD of 1.3 N. In Figure 4-7, 𝐹0 shows the amplitude of the 

harmonic component. 

 
Figure 4-7. Experimental ratios of displacement FFT to force FFT for the multi-tone signal with 

harmonic amplitude of 1.1 N, 3.4 N and, 5.6 N and same noise STD of 1.3 N and analytical identified 

displacement to force ratio. 

The identified parameters for the linear beam are shown in Table 4-1. Two sets of 

identified parameters are presented in the table: linear system 1 and linear system 2. 

The linear system 1 column demonstrates the identified parameters for the linear beam 

used in Chapter 2, and the parameters in the linear system 2 column describe the 

identified parameters for the linear beam used in Chapter 4.  
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Table 4-1. The identified parameters for linear beams used in Chapter 2 and Chapter 4. 

Parameter Linear System 1 Linear System 2 

m (kg) 16.5 16.6 

𝐤𝟏 (N/m) 1.77*10
5
 1.78*10

5
 

𝐤𝟑 (N/m) 0 0 

𝜻 0.006 0.006 

 

The identified parameters shown in Table 4-1 are very close since the same beam 

is used in Chapter 2 and Chapter 4, and only the laser displacement sensor is moved to 

a closer location to the base for the experiments in Chapter 4. Also, it should be noted 

that 𝐹𝑠𝑡𝑎𝑡𝑖𝑐 = 60 𝑁 for the experimental bistable beam. Static force is calculated as the 

product of linear stiffness, location of stable position, and a geometric correction factor 

of 0.29. 

4.3.3.  Bistable Beam 

In this section, the experimental results for the cantilevered bistable beam are 

presented. 

Harmonic Force Amplitude of 1.1 N (𝐹𝑟= 0.02) 

In this section, the frequency response of the bistable to excitations with low 

harmonic amplitude of 1.1 N is presented. The bistable beam shows linear behavior at 

low excitation amplitudes since it oscillates around one potential well. The numerical 

and experimental frequency responses for the bistable beam subjected to the pure 

harmonic excitation of amplitude 1.1 N are presented in Figure 4-8. The identified linear 

stiffness for the beam in this chapter multiplied by a correction factor of 0.78 is used for 

the numerical calculation of frequency response at harmonic amplitude of 1.1 N. 

Damping ratio is also increased to 0.008 for finding theoretical displacement to force 

ratio. 
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Figure 4-8. Numerical and experimental frequency responses of the bistable beam subjected to 

harmonic excitation with the amplitude of 1.1 N: (a) displacement STD to force STD (b) acceleration 

STD to force STD. 

As can be seen in Figure 4-8, the bistable beam behaves like a linear system for 

low excitation forces, and the acceleration and displacement frequency responses have 

sharp narrow peaks near the resonance frequency. There is an acceptable match 

between numerical and experimental results for frequencies less than 22 Hz. As 

expected, the difference between numerical and experimental results is higher at post-

resonance frequencies. This is mainly because the effect of higher modes of vibration is 

dominant at high frequencies, and the mathematical model is only able to predict the 

single-mode behavior of the bistable structure. The numerical and experimental 

displacement bifurcation diagrams are represented in Figure 4-9. The numerical and 

experimental bifurcation diagrams look the same except at the resonant frequency. It 

seems that a jump in displacement exists at resonance for the numerical bifurcation 

diagram. Overall, both bifurcation diagrams predict the same dynamical behavior for 

the bistable system.  
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Figure 4-9. Displacement bifurcation diagrams for 1.1 N harmonic force amplitude: (a) numerical (b) 

experimental. 

Figure 4-10 shows the frequency responses of the bistable beam subjected to 

excitation with different levels of noise. All of the excitations have the same harmonic 

amplitude of 1.1 N. The frequency response has a sharp resonance peak for pure 

harmonic excitation. The resonance peak decreases by adding noise with 1.3 N STD to 

the harmonic input. By increasing noise STD to 2.4 N, the peak flattens out and the 

displacement to force ratio looks like a flat line in the entire frequency band. With an 

increase of noise STD to 5.3 N, the frequency response magnitude increases, and it gets 

scattered in the entire range. 
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Figure 4-10. Experimental ratios of displacement STD to force STD for the excitation with harmonic 

amplitude of 1.1 N and noise STD of 0 N, 1.3 N, 2.4 N, and 5.3 N. 

Figure 4-11 presents the experimental mean displacement for excitation with 

harmonic amplitude of 1.1 N and different levels of noise. In Figure 4-11, 𝑋01 and 

𝑋02 are the locations of positive and negative stable equilibrium positions, respectively. 

For pure harmonic excitation and excitations with noise STDs of 1.3 N and 2.4 N, the 

bistable system has a single-well oscillation since the displacement mean is very close to 

the positive potential well in the entire frequency range. For the highest level of noise, 

the bistable system is achieving snap-through at various frequencies. The displacement 

mean is close to zero when the system is moving back and forth between negative and 

positive potential wells. It is observed that high levels of noise can induce snap-through 

in a bistable structure, even for low-amplitude harmonic excitations. 
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Figure 4-11. Experimental mean displacement for excitation with harmonic amplitude of 1.1 N and 

noise STD of 0 N, 1.3 N, 2.4 N, and 5.3 N. 

Harmonic Force Amplitude of 15.5 N (𝐹𝑟= 0.26) 

The bistable beam is excited with large harmonic force amplitudes to ensure that 

the response shows nonlinear behavior. Figure 4-12 presents displacement for excitation 

with harmonic amplitude of 15.5 N and different noise levels. Jumps exist in 

displacement for all excitations. For noise STD of 2.4 N, the beam is achieving single-

well oscillation around the positive potential well. For pure harmonic excitation and 

noise STD of 1.3 N, the beam is achieving oscillation around the top stable position up 

to the frequency of around 17.8 Hz. Then, the beam is snapping from the top stable 

position to the bottom one at around 17.8 Hz and continues oscillating around the 

bottom stable position for these two excitations. Also, the beam is achieving cross-well 

motion at 17.8 Hz for noise STD of 1.3 N. For the highest noise level, the bistable beam 

is able to perform snap-through in the entire frequency domain. 
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Figure 4-12. Experimental mean displacement for the excitation with harmonic amplitude of 15.5 N 

and noise STD of 0 N, 1.3 N, 2.4 N, and 5.3 N. 

4.4.  Parametric Analysis 

The parameters used for studying the required energy for cross-well actuation of 

the bistable structure subjected to multi-tone excitation are the same as the ones used in 

Chapter 3 for single-tone harmonic excitation. Three different force amplitudes are 

considered: one quarter of the static force, equivalent to the static force, and 1.5 times 

the static force. Energy functions are plotted for four different ratios of noise STD to 

harmonic STD for an under-actuated bistable system. 𝐹𝑛 is defined as the ratio of noise 

STD to harmonic STD. 𝐹𝑛 values are: 0.2, 0.4, and 1. 
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Table 4-2. Parameters for numerical simulations. 

Parameter Range 

m (kg) 1.00 

𝛚𝐧 (Hz) 13.0 

𝜻 0 - 1 

𝐤𝟏 (N/m) 𝜔𝑛
2 

Δ 1.00*10
4
 

𝐤𝟑 (N/m) 6.67*10
3
 

𝑭𝒓 = 𝑭𝟎/𝑭𝒔𝒕𝒂𝒕𝒊𝒄 0.250 

𝑭𝒏 0.20, 0.40, 1.0 

𝛚𝐫 = 𝛚/𝛚𝐧 0 - 8 

 

The energy functions for the linear and the bistable systems are presented in the 

following sections for different harmonic force amplitudes and levels of noise. 

4.5.  Linear System Energy Behavior 

Figure 4-13 represents the energy function for an under-actuated linear system 

subjected to excitation with different levels of noise. The energy function for pure 

harmonic excitation is shown in Figure 4-13 (a). By adding the colored noise signal to 

harmonic excitation in Figure 4-13 (b), the linear system is able to reach the objective 

position for low excitation frequencies and low damping ratios. Also, several high 

energy points can also be seen around the excitation frequency equal to the natural 

frequency and high damping ratios. Further, by increasing 𝐹𝑛 to 0.4 in Figure 4-13 (c), 

the linear system is able to reach the target displacement at higher excitation 

frequencies and low damping ratios. For the highest level of noise (𝐹𝑛 = 1) in Figure 4-13 

(d), the range of damping ratio shows significant increase. As can be observed in this 

figure, there are many points at higher damping ratios in the whole excitation 

frequency range capable of reaching the target displacement. 
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Figure 4-13. Total energy of a linear system with 𝑭𝒓 = 0.25 as a function of frequency ratio and 

damping ratio for (a) pure harmonic excitation and excitation with 𝑭𝒏 of (b) 0.2 (c) 0.4 (d) 1. 

Figure 4-14 shows the normalized damping energy functions for an under-

actuated linear system. The normalized damping energy is the ratio of damping energy 

to the total energy. As can be seen in Figure 4-14, the range of excitation frequency ratio 

reaches up to eight for cross-well transfer by increasing the level of noise. Also, the 

linear system can reach the objective displacement at excitation frequencies close to 

zero. The color in Figure 4-14 is proportional to the number of zero-velocity crossings at 

each point, and the color bar presents the color distribution for the shown range of 

number of zero-velocity crossings. Also, the color is proportional to the number of zero-

velocity crossings for all normalized damping energy functions in the preceding pages. 
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Figure 4-14. Normalized damping energy of a linear system with 𝑭𝒓 = 0.25 as a function of frequency 

ratio and damping ratio for (a) pure harmonic excitation and excitation with 𝑭𝒏 of (b) 0.2 (c) 0.4 (d) 1. 

Figure 4-15 shows the normalized damping energy functions. The range of 

damping ratio changes from 0.13 to 0.25 by increasing 𝐹𝑛 from 0 to 1. Additionally, the 

number of points for the highest level of noise in Figure 4-15 (d) is much larger 

compared to the energy functions with lower levels of noise in Figure 4-15 (a-c). 
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Figure 4-15. Normalized damping energy of a linear system with 𝑭𝒓 = 0.25 as a function of frequency 

ratio and damping ratio for (a) pure harmonic excitation and excitation with 𝑭𝒏 of (b) 0.2 (c) 0.4 (d) 1. 

4.6.  Bistable System Energy Behavior 

This section presents the energy functions for an under-actuated bistable 

structure. Figure 4-16 shows the energy functions for the excitations with different 

levels of noise. As can be seen in Figure 4-16 (a), the bistable system is not capable of 

achieving cross-well oscillation at low excitation frequencies for pure harmonic 

excitation. As can be seen in Figure 4-16 (b), the bistable system achieves cross-well 

oscillation at excitation frequencies close to zero and at high excitation frequencies by 

adding noise to the harmonic input. Furthermore, by increasing the noise content of the 

signal, the range of excitation frequency and damping ratio increase, and the bistable 

system, as shown in Figure 4-16 (d), is able to perform snap-through at low frequencies 

and high damping ratios.  
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Figure 4-16. Total energy of a bistable structure with 𝑭𝒓 = 0.25 as a function of frequency ratio and 

damping ratio for (a) pure harmonic excitation and excitation with 𝑭𝒏 of (b) 0.2 (c) 0.4 (d) 1. 

Figure 4-17 shows the normalized damping energy functions for an under-

actuated bistable system. The maximum normalized damping energy in Figure 4-17 is 

around 50% for the pure harmonic excitation. By adding noise to the harmonic signal, 

the normalized damping energy increases and reaches up to 99%, as shown in Figure 

4-17 (b-d). Also, the maximum excitation frequency ratio increases from two for pure 

harmonic input to eight for the bistable systems subjected to excitations with non-zero 

noise content. 

(d)(c)

(a) (b)
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Figure 4-17. Normalized damping energy of a bistable structure with 𝑭𝒓 = 0.25 as a function of 

frequency ratio and damping ratio for (a) pure harmonic excitation and excitation with 𝑭𝒏 of (b) 0.2 (c) 

0.4 (d) 1. 

Figure 4-18 shows the normalized damping energy form. The mentioned 

findings can also be observed in this figure. Specifically, the maximum damping ratio is 

less than 0.17 for the pure harmonic excitation. This value goes up to around 0.37 for the 

maximum noise level considered here. 

(a)

(c) (d)

(b)
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Figure 4-18. Normalized damping energy of a bistable structure with 𝑭𝒓 = 0.25 as a function of 

frequency ratio and damping ratio for (a) pure harmonic excitation and excitation with 𝑭𝒏 of (b) 0.2 (c) 

0.4 (d) 1. 

4.7.  Comparison of Linear and Bistable Systems 

In this section, the energy functions for the linear and the bistable systems are 

compared. Figure 4-19 shows the comparison between the total energy functions. The 

linear and bistable energy functions are placed in the right and left columns, 

respectively. The bistable system has larger ranges of damping ratio and excitation 

frequency for all excitations. In addition, the energy functions for both the bistable and 

the linear systems look very similar for the highest level of noise in Figure 4-19 (g-h). As 

expected, it is shown that the linear and bistable systems behave similarly under a high 

level of noise. 

(a)

(c)

(b)

(d)
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Figure 4-19. Comparison between total energies of a linear system (left column) and a bistable system 

(right column) subjected to: (a-b) pure harmonic excitation and excitations with 𝑭𝒏 of: (c-d) 0.2 (e-f) 0.4 

(g-h) 1. 

Figure 4-20 presents the comparison between normalized damping energy 

functions. For pure harmonic excitation, the maximum damping energies are around   

98% and 50% for linear and bistable systems, respectively. 

(c)

(e)

(g)

(a) (b)

(f)

(d)

(h)
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Figure 4-20. Comparison between damping energies of a linear system (left column) and a bistable 

system (right column) subjected to: (a-b) pure harmonic excitation and excitations with 𝑭𝒏of: (c-d) 0.2 

(e-f) 0.4 (g-h) 1. 
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Figure 4-21 presents the comparison between normalized damping energy 

functions. The energy functions look very similar for the largest level of noise. 
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Figure 4-21. Comparison between damping energies of a linear system (left column) and a bistable 

system (right column) subjected to: (a-b) pure harmonic excitation and excitations with 𝑭𝒏 of: (c-d) 0.2 

(e-f) 0.4 (g-h) 1. 
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4.8.  Conclusions 

In this chapter, the energy required to perform a snap-through in a bistable 

structure subjected to a band-limited noise input is studied. To better understand the 

bistable system energy function, the required energy is also studied for a linear system. 

The range of damping ratio and excitation frequency in the linear and bistable 

energy functions increase by increasing the level of noise. It is observed that a bistable 

system has a larger range of excitation frequency and damping ratio compared to a 

linear system for the same force input. Additionally, the bistable and linear system 

energy functions look very similar for high levels of noise. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

This research investigated the minimum required energy for performing snap-

through of a bistable structure. Energy is studied as a function of excitation frequency 

and damping ratio for different values of excitation force amplitudes and different noise 

levels. 

The well-known one-degree-of-freedom Duffing-Holmes equation is used to 

mathematically model a bistable structure. The mathematical model is validated by 

building and testing a magneto-elastic beam subjected to harmonic excitation. 

The required energy is calculated by solving the Duffing-Holmes equation 

subjected to single-tone harmonic and multi-tone excitations. 

First, this chapter summarizes the results of this research. Next, papers published 

based on this research are listed. Finally, future recommendations are made. 

5.1.  Summary of Results 

Chapter 2 discusses the mathematical modeling of a bistable structure using a 

one-degree-of-freedom Duffing-Holmes oscillator and the experimental validation of 

the model. A cantilevered bistable beam was fabricated for the experiments. There is a 

good match between predicted analytical results and experimental frequency responses. 

A number of important issues exist that are responsible for the discrepancy between 

experimental and numerical results. First, a mathematical model with symmetric 

potential wells is used to model the experimental response. Second, a one-degree-of-

freedom model was used for the bistable beam by making an assumption that the 

bistable beam is vibrating in its first mode of bending. The single-mode vibration 
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assumption creates differences between numerical and experimental results at high 

frequencies when the bistable beam has other modes of vibration in addition to the first 

bending mode. 

Chapter 3 demonstrated an understanding of the required energy for cross-well 

oscillation as a function of damping ratio and excitation frequency for different values 

of excitation force amplitudes. To better understand the nonlinear behavior of a bistable 

structure, a linear system is also investigated. Both systems are excited by a single-tone 

harmonic force. For a linear, viscously damped mechanical oscillator, it is observed that 

the energy function is quantized because reaching target displacement occurs during 

the transient region of the response, and the energy function becomes more continuous 

and less quantized by increasing the force amplitude. The energy function of a bistable 

structure is scattered and divided into several energy levels for the force amplitude less 

than the static force. By increasing the force amplitude to the static force and larger 

values, the ranges of excitation frequency ratios and damping ratios able to achieve 

cross-well oscillation increase significantly, and energy function becomes much more 

continuous. 

Chapter 4 extends the energy investigation of the bistable structure subjected to a 

band-limited noise input. To better understand the bistable system energy function, the 

required energy is also studied for a linear system. The range of damping ratio and 

excitation frequency in the linear and bistable energy functions increase by increasing 

the level of noise. It is observed that a bistable system has a larger range of excitation 

frequency and damping ratio compared to a linear system for the same force input. 

Additionally, the bistable and linear energy functions look very similar for high levels 

of noise. There is an acceptable match between the theoretical results and the 

experimental results. 
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5.2.  Related Publications 

In the development of this dissertation, a paper was presented at a conference. 

Another paper was published in the AIAA Journal. These papers are referenced below. 

1.  M. Zarepoor and O. Bilgen, "Constrained-Energy Cross-Well Actuation of the 

Duffing-Holmes Oscillator", 57th AIAA/ASCE/AHS/ASC Structures, Structural 

Dynamics, and Materials Conference, AIAA SciTech, (AIAA 2016-0201). 

2.  M. Zarepoor and O. Bilgen, "Constrained-Energy Cross-Well Actuation of Bistable 

Structures," AIAA Journal, pp. 1-4, 2016, http://dx.doi.org/10.2514/1.J055148. 

3.  Rebecca Hattery, Masoud Zarepoor, Onur Bilgen, “A Review of Modeling of 

Piezocomposite Structures”, In Review. 

5.3.  Future Research 

A point load is used to actuate the linear system and the bistable system in this 

dissertation. Future research can focus on distributed actuation of a bistable structure 

by using piezoelectric actuators. Further, the effect of hysteresis on the required energy 

for piezoelectric cross-well actuation of bistable structures can be investigated. 
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